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SUMMARY

The myxovirus resistance (Mx) proteins are inter-
feron-induced dynamin GTPases that can inhibit a
variety of viruses. Recently, MxB, but not MxA, was
shown to restrict HIV-1 by an unknown mechanism
that likely occurs in close proximity to the host cell
nucleus and involves the viral capsid. Here, we pre-
sent the crystal structure of MxB and reveal determi-
nants involved in HIV-1 restriction. MxB adopts an
extended antiparallel dimer and dimerization, but
not higher-ordered oligomerization, is critical for
restriction. Although MxB is structurally similar to
MxA, the orientation of individual domains differs be-
tweenMxA andMxB, and their antiviral functions rely
on separate determinants, indicating distinct mecha-
nisms for virus inhibition. Additionally, MxB directly
binds the HIV-1 capsid, and this interaction depends
on dimerization and the N terminus of MxB as well as
the assembled capsid lattice. These insights estab-
lish a framework for understanding the mechanism
by which MxB restricts HIV-1.

INTRODUCTION

Myxovirus resistance protein 2 (MxB) is an interferon-induced in-

hibitor of HIV-1 infection (Goujon et al., 2013; Kane et al., 2013;

Liu et al., 2013). MxB was traditionally thought to function in

cell-cycle progression and regulation of nuclear import (King

et al., 2004; Melén et al., 1996). This antiviral function occurs

downstream of reverse transcription, decreasing the amount of

integrated viral DNA (Liu et al., 2013) and 2-long terminal repeat

(2-LTR) circular DNA (Goujon et al., 2013; Kane et al., 2013) that

marks translocation of the cytoplasmic reverse transcription

complex into the nucleus. These results suggest that MxB in-

hibits HIV-1 nuclear import or destabilizes nuclear viral DNA

(Goujon et al., 2013; Kane et al., 2013). MxB is highly homolo-

gous in sequence (63% identity) to MxA, whose antiviral activ-

ities are well established (Aebi et al., 1989; Hefti et al., 1999).

MxA restricts both DNA and RNA viruses, including influenza A

virus (Haller and Kochs, 2011). It has been shown that MxA inter-

feres with translocation of viral components between the cyto-
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plasm and the nucleus, potentially via binding to and causing

mislocalization of viral nucleocapsid protein (Kochs and Haller,

1999a, 1999b; Kochs et al., 2002b; Reichelt et al., 2004).

Both MxB and MxA are guanosine triphosphatases (GTPases)

that belong to the dynamin superfamily. Extensive structural,

biochemical, and cellular studies have revealed the function of

each MxA domain. The amino-terminal GTPase domain binds

and hydrolyzes GTP, while a bundle signaling element (BSE)

domain connects and transmits signals between the GTPase

and the stalk domains (Gao et al., 2011). The stalk domain is crit-

ical for oligomerization (Gao et al., 2010, 2011; Haller et al., 2010;

Kochs et al., 2002a). GTPase activity and oligomerization are

critical for viral inhibition by MxA (Daumke et al., 2010; Di Paolo

et al., 1999; Melén et al., 1992; Pavlovic et al., 1993; Schwemmle

et al., 1995).

Despite the similarity in sequence and architecture, MxB and

MxA work against different viruses and appear to have different

mechanisms of action. MxB restricts HIV-1, which is not among

the diverse range of viruses inhibited by MxA. MxB (715 amino

acids) harbors a 43 residue N-terminal extension that contains

a nuclear localization signal (NLS), which is critical for HIV-1 re-

striction (Kane et al., 2013;Melén et al., 1996). A shorter MxB iso-

form that initiates fromMet26 lacks the NLS and therefore would

not restrict HIV-1 (Melén et al., 1996). TheMxBN-terminal region

also contains anti-HIV-1 specificity determinants distinct from

the NLS (Busnadiego et al., 2014; Goujon et al., 2014; K.A.M.

et al., unpublished data). Besides the N-terminal differences,

MxB mutants that are unable to bind or hydrolyze GTP retain

the ability to restrict HIV-1 (Goujon et al., 2013; Kane et al.,

2013), which is contrary to theGTPase-dependent restriction ac-

tivity of MxA. Furthermore, instead of targeting the nucleocapsid

protein like MxA, the antiviral activity of MxB involves the HIV-1

capsid protein (CA), as CA mutations can counteract restriction

by MxB (Busnadiego et al., 2014; Goujon et al., 2014; Kane

et al., 2013; Liu et al., 2013). Though HIV-1 CA interacts with

many cellular factors, including CypA, TRIM5a, CPSF6, and

NUP153 (Ambrose and Aiken, 2014; Matreyek and Engelman,

2013), it remains to be determined if there is a direct interaction

between MxB and CA, or if other cellular factors mediate the

CA-dependent activity ofMxB. In addition, it is unknownwhether

MxB functions by forming MxA-like higher order oligomers

(Melén and Julkunen, 1997).

To provide insight into its mechanism of HIV-1 restriction, we

determined the crystal structure of MxB. The structure shows

that MxB has a similar architecture to MxA but with different
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Figure 1. Structure of MxB84YRGK and Its Antiviral Activity

(A) Structure of the MxB dimer shown in two orientations, with protomers 1 and 2 colored in purple and yellow, respectively.

(B) Schematic (left) and structure (right) of an MxB protomer with residues of domain boundaries denoted and colored. The arrows in the schematic denote the

first and last visible residues in the structure.

(C) Superposition of protomer 1 and protomer 2 in two views.

(D) Cells expressing HA-taggedWTorMxBYRGKwere analyzed forMxB expression. Total cellular proteins were extracted, resolved by SDS-PAGE, and visualized

by western blotting with anti-HA antibody. WT MxB expression was set to 1. Results are the mean of threee independent experiments, with error bars denoting

standard error.

(E) Immunofluorescent microscopy of untransduced or MxB-expressing cells. Blue, nuclear DNA.

(F) Susceptibility of WT or MxBYRGK-expressing versus control (nontransduced) HOS cells to HIV-1 (dark gray), EIAV (light gray), or FIV (striped gray) infection.

Error bars denote 95% confidence intervals derived from seven independent experiments.

Cell Host & Microbe

Structural Insight into HIV-1 Restriction by MxB
domain orientations.We further performed detailedmutagenesis

studies that inform about the regions of MxB that are critical for

HIV-1 restriction. Our results reveal key differences between the

antiviral activities of MxA and MxB, demonstrating that these

closely related proteins have distinct mechanisms of action.

Importantly, our study establishes that MxB binds directly to

HIV-1 capsid assemblies and indicates that direct engagement

of the capsid lattice by the antiparallel MxB dimer is critical to

antiviral function.

RESULTS

Crystal Structure of MxB
To investigate the structural basis for HIV-1 restriction, we crys-

tallized an N-terminal truncation of MxB. To improve the solution

behavior of MxB, we deleted the first 83 amino acids, which are
628 Cell Host & Microbe 16, 627–638, November 12, 2014 ª2014 Els
predicted to be unstructured, and introducedmutations into loop

2 of the stalk domain (YRGK487-490AAAA), as similar changes

improved the solution behavior of MxA (Gao et al., 2010, 2011).

This construct, MxB84YRGK, allowed for the purification of mono-

dispersed, dimeric protein that crystallized and diffracted X-rays

to 3.2 Å resolution. We solved the structure by molecular

replacement usingMxA as a search model and refined the struc-

ture to Rwork/Rfree of 26.5%/29.9% with one MxB dimer in the

asymmetric unit (Figure 1A). The detailed statistics are shown

in Table 1. Two MxB protomers form an extended antiparallel

dimer (Figure 1A). The GTPase and stalk domains are located

at either end of the MxB protomer, bridged by the BSE domain

that is composed of three helices originating from distinct re-

gions of the primary amino acid sequence (Figure 1B). Residues

84–92, 145–149, 231–237, 580–621, and 712–715 are disor-

dered in the structure. The structures of the corresponding
evier Inc.



Table 1. Data Collection and Refinement Statistics

Data Collection

Wavelength (Å) 0.9792

Space group P21

Cell Dimensions

a, b, c (Å) 53.18, 80.78, 183.67

a, b, g (�) 90.00, 95.73, 90.00

Molecules/asymmetric unit 2

Resolution (Å) 43.9–3.2 (3.26–3.20)a

Rmerge 0.087 (>1.0)

I/sI 16.1 (1.1)

Completeness (%) 94.7 (89.9)

Redundancy 5.4 (5.1)

Unique reflections 24,248

Refinement

Number of nonhydrogen atoms 9,082

Rwork/Rfree (%) 26.5/29.9

Average B factor 148

Root-Mean-Square Deviation (rmsd)

Bond lengths (Å) 0.002

Bond angles (�) 0.6

Ramachandran Analysis

Preferred regions (%) 95.0

Allowed regions (%) 4.1

Outliers (%) 0.9
aValues in parenthesis are for highest-resolution shell.
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domains in the two protomers are nearly identical, with root-

mean-square deviations (rmsd) ranging between 0.25 and

0.38 Å (Figure 1C). The overall rmsd of the two MxB protomers

is 1.7 Å, which is substantially larger than that of the individual

domains, indicating flexibility at the linker regions connecting

the domains.

To characterize the physiological relevance of MxB84YRGK, we

assessed the antiviral activities of wild-type (WT) and mutant

MxB proteins. MxB was stably expressed with a C-terminal

hemagglutinin (HA) tag to facilitate its immunodetection in hu-

man osteosarcoma (HOS) cells, which were used previously to

assess the mechanism of HIV-1 restriction (Kane et al., 2013). In-

dependent of stimulation by interferon (IFN) a, HOS cells did not

detectably express endogenous MxB protein (K.A.M. et al., un-

published data). Immunofluorescent staining revealed that WT

MxB formed cytoplasmic puncta and localized to the nuclear

rim (Figure 1E), as described previously (Kane et al., 2013;

King et al., 2004; Melén et al., 1996). Although the MxB84YRGK

construct is presumably inactive due to loss of the N-terminal

NLS (Kane et al., 2013), we independently tested whether the

YRGK487-490AAAA mutation affected the antiviral activity of

full-length MxB. The mutant protein (MxBYRGK) was expressed

to about 80% of the level of WT MxB (Figure 1D) and, in contrast

to the punctate staining observed with the WT protein, MxBYRGK

exhibited more diffuse staining within the cytoplasm (Fig-

ure 1E). WTMxB restricted HIV-1 infection about 10-fold without

noticeably affecting the infectivity of equine infectious anemia

virus (EIAV) or feline immunodeficiency virus (FIV) (Figure 1F).
Cell Host &
MxBYRGK also significantly inhibited HIV-1 infection (�6-fold).

The mutant protein restricted EIAV infection by about 3-fold

but remained inert against FIV. The gain-of-function against

EIAV could be due to the altered pattern of MxBYRGK subcellular

localization (Figure 1E). WT MxB, moreover, was reported in an

independent study to restrict EIAV at a level similar to that

observed here for MxBYRGK (Kane et al., 2013). In any case,

the solubility-enhancing YRGK487-490AAAA mutations used

for crystallographic studies did not significantly alter the ability

for MxB to restrict HIV-1.

BSE Hinge Communication Is Not Required for HIV
Restriction
Although the overall arrangement of individual protein domains is

similar between the MxA and MxB structures, large differences

in domain orientation are observed between the proteins (Fig-

ure 2A). The individual domain structures of the two proteins

are quite similar, with corresponding rmsd in the range of 0.8–

1.1 Å, while the overall rmsd between MxA and MxB protomers

is greater than 6.4 Å. The difference in domain orientations,

pivoted around two hinge regions connecting the domains, is

primarily responsible for the overall deviation between MxA

and MxB (Figure 2A).

We next tested the potential involvement of hinge communica-

tion inMxB function. Residues at the ends of the BSE are thought

to act as hinges that transfer signals between the GTPase and

stalk domains in dynamin superfamily proteins (Gao et al.,

2011; Prakash et al., 2000). We compared the structures and

sequences of MxA and MxB and identified key residues in

each of the two MxB hinges (Figure 2B). Hinge 1 has two loops

that connect the BSE to the stalk domain (residues 406–416

and 679–684). The highly conserved residue R689 on helix 3 of

the BSE contacts G408 and D410 on BSE loop 1. R689 also in-

teracts with the side chain of E681 on BSE loop 2. Hinge 2 pivots

around P387, which causes a kink in the a helix connecting the

GTPase domain and the BSE. MxB hinge mutants E681A and

R689A were expressed in HOS cells at levels similar to the WT

protein (Figures 2C and 2D) and significantly inhibited HIV-1

infection, by �10-fold and �5.5-fold, respectively (Figure 2E).

The corresponding MxA mutations, E632A and R640A, reduced

MxA oligomerization, GTPase activity, and antiviral activity (Gao

et al., 2011). These observations indicate that anti-HIV-1 activity

is not dependent on the transfer of information from the GTPase

domain to the stalk domain, which is consistent with data

showing that MxB antiviral function is independent of GTPase

activity (Goujon et al., 2013; Kane et al., 2013).

Dimerization, but Not Higher-Order Oligomerization, of
MxB Is Required for Antiviral Activity
MxB forms an antiparallel dimer with the dimer interface lying at

the center of the two protomers. It is composed of residues on

stalk helices 3 and 4 (Figure 3A). To be consistent with the

MxA/dynamin convention, we refer to the dimer interface as

interface 2 (Figure 3A). The buried surface area at this interface

is 1,074 Å2, with symmetric hydrophobic contacts between

M567, L570, M574, and V578 of each protomer with M567,

L570, F647, and Y651 of the other protomer. The dimer is further

stabilized by hydrogen bonds between Q571 of each protomer

and Q644 of the other protomer (Figure 3B). We tested the
Microbe 16, 627–638, November 12, 2014 ª2014 Elsevier Inc. 629



Figure 2. MxB Hinge Mutations Do Not Abolish Antiviral Activity

(A) Superposition of MxA monomer (PDB ID: 3SZR; red) and MxB protomer 1 (purple), based on either GTPase domain (left) or stalk domain (right).

(B) Zoomed-in view of BSE domain with hinges and key residues highlighted.

(C–E) Cells expressingWT, E681A, or R689Amutant MxB were analyzed for (C) total expression, (D) subcellular localization, and (E) antiviral activity as described

in Figure 1. Relative expression values are an average of at least three independent blotting experiments, with error bars denoting standard error. Infection values

are the mean of five independent experiments, with error bars denoting 95% confidence intervals.
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importance of interface 2 in MxB dimerization and found that

an M574D mutation destabilized the dimerization interface.

MxB84YRGK eluted from a size-exclusion column at a volume

that corresponds to the molecular weight of an extended dimer

based on molecular weight standards. The M574D mutation

decreased dimerization, as the majority of MxB84YRGK/M574D

eluted at a volume corresponding to the molecular weight of

monomeric MxB (Figure 3C). This is consistent with the observa-

tion that the corresponding residue in MxA is critical for MxA

dimerization (Gao et al., 2010).

We tested the requirement of MxB dimerization for its antiviral

function. Interface 2mutantsM574D, Y651D, andM567D/L570D

were ineffective against HIV-1, each inhibiting infection 1.6-fold

or less, which did not differ significantly from EIAV or FIV (Fig-

ure 3D). The dimerization state of MxB appears to affect its

expression pattern, as the interface 2 mutants were expressed

at �30%–50% of the level of WT MxB (Figure 3E). The mutant

proteins also exhibited drastically altered localization compared

to WT MxB, as they stained throughout the cell, including prom-
630 Cell Host & Microbe 16, 627–638, November 12, 2014 ª2014 Els
inent staining within the intranuclear space (Figure 3F). In a sepa-

rate study, we determined that the MxB GTPase mutant T151A,

which was expressed at�38%ofWTMxB, displayed full restric-

tion activity (K.A.M. et al., unpublished data). Our findings

accordingly indicate that dimerization plays an important role

inMxB subcellular localization and is required for viral restriction.

MxB dimers can form higher-order assemblies by interdigi-

tating through the stalk and BSE regions as observed in MxA.

This mode of higher-order oligomerization is formed through

MxB crystal packing interactions (Figure 4A). Through this inter-

action, MxB dimers may assemble to form filaments. The MxB

dimer-dimer interface revealed in the crystal structure has a

buried surface area of > 2,500 Å2. Following the convention for

MxA, we refer to the interface region at the beginning of stalk he-

lices as interface 1. Interaction at this interface is critical for MxA

function (Gao et al., 2010). Interface 1 involves the stalks from

one protomer of each interacting MxB dimer (designated proto-

mer 1 and protomer 10; the prime symbol denotes an adjacent

dimer) (Figure 4A). The interactions at this interface include the
evier Inc.



Figure 3. The MxB Dimer Is Required for Antiviral Activity

(A) Dimer of MxB (top) with zoomed-in view of dimer interface in surface representation (bottom).

(B) Zoomed view of dimer interface with key residues shown as sticks.

(C) Size-exclusion chromatography analysis of MxB84YRGK (green), which elutes at a volume corresponding to a dimer, and MxB84YRGK/M574D (cyan), a majority of

which elutes at a volume corresponding to a monomer. Inset, SDS-PAGE of peak fractions corresponding to monomeric (lane 2 of each set) and dimeric (lane 1)

MxB.

(D) Antiviral activities of WT and interface 2 mutants of MxB. Activity assays are as described in Figure 1F. Results are an average of at least four independent

experiments, with error bars denoting 95% confidence intervals.

(E) Total mutant MxB expression levels relative toWTMxB (set to 1). Results are an average of three independent experiments, with error bars denoting standard

error.

(F) WT and mutant MxB localization as determined by confocal microscopy following antibody staining.
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symmetric hydrophobic contacts of I423, M666, and L669 in

both stalks (Figure 4A). This is further stabilized by a hydrogen

bond between E424 of protomer 1 and K663 of protomer 10.
To gain insight into higher-ordered oligomerization of MxB,

we analyzed how mutations in these interfaces alter MxB’s olig-

omerization state by cryoelectron microscopy (cryo-EM). An

assortment of structural assemblies was observed by cryo-EM

for the purified full-length WT MxB tagged with maltose-binding

protein (MBP-MxB). Short filaments and circular structures were

seen clustering together into aggregate assemblies (Figure 4B,

left panel). Introduction of I423D/K663D/M666D mutations

into the full-length MBP-MxBYRGK construct (MBP-MxBYRGK/

IKM) improved the solution behavior and rendered the protein

less prone to aggregation. Discrete particles of oligomers �30–

40 nm across were the majority among the structural assemblies

observed for this interface mutant (Figure 4B, right panel). This

observation is consistent with our results by size-exclusion chro-

matography, where MBP-MxBYRGK/IKM, MBP-MxBIKM, and

MBP-MxBIK primarily eluted as soluble dimers (Figures 4C and

5E), while MBP-MxB migrated as a higher-order assembly or

aggregate (Figure 4C).

We tested the requirement of higher-order oligomerization

for MxB antiviral function. Interface 1 mutants I423D, K663D,

M666D, and the I423D/K663D double mutant potently inhibited

HIV-1 infection (greater than 11-fold; Figure 4D). WT MxB and
Cell Host &
interface 1mutants were expressed at similar levels as assessed

by western blotting (Figure 4E) and displayed similar subcellular

localization (Figure 4F). These results indicate that MxB

oligomerization through interface 1 is not critical for HIV-1

restriction.

MxB Directly Interacts with HIV-1 Capsid Assemblies
We initially probed MxB binding to HIV-1 capsid using HOS cell

lysates and recombinant A14C/E45C CA, which forms stable,

crosslinked tubular assemblies (Pornillos et al., 2009). The CA

assemblies are sufficiently large to pellet in an Eppendorf centri-

fuge (Matreyek et al., 2013), and capsid-binding partners can be

detected in a copelleting assay (Henning et al., 2014; Stremlau

et al., 2006). MxB binding was quantified as the percent of input

protein that copelleted in the presence of CA corrected for the

level of protein that nonspecifically pelleted in control reactions

that lacked CA. WT MxB-HA efficiently copelleted with CA as-

semblies (Figure 5A; �45% of input protein recovered versus

�8% nonspecific pelleting). MxB interface 1 mutants K663D,

I423D/K663D, and M666D also interacted efficiently with CA,

yielding 27%, 40%, and 26% binding specificity, respectively

(Figure 5A). Hinge 1 mutant E681A displayed reduced binding

specificity compared to WT MxB (about 9.8% after background

correction). Interface 2 mutants M574D and Y651D were

more defective, yielding binding specificity values of about 2%
Microbe 16, 627–638, November 12, 2014 ª2014 Elsevier Inc. 631



Figure 4. Higher-Order Oligomerization of MxB Is Not Required for Antiviral Activity

(A) Two adjacent MxB dimers representing formation of higher-order oligomers in two views (left) and a zoomed-in view of higher-order interface 1 (right).

Protomer 1 and 2 of one dimer are colored as in Figure 3 while protomer 10 and 20 are colored in dark gray and light gray, respectively. Important interface residues

are shown in sticks.

(B) Cryo-EM images of full-length MBP-MxB WT (6 mM) and the interface mutant MBP-MxBYRGK/IKM (3 mM). Short filaments (marked by arrows) and circular

structures (marked by triangles) are seen for WT MBP-MxB.

(C) Size-exclusion chromatography analysis of MBP-MxB1-715 (green), which elutes close to the void volume, and MBP-MxB1-715 IK/DD (red) and MBP-MxB1-715

IKM/DDD (blue), which elute at volumes corresponding to dimers. Inset, SDS-PAGE of peak fractions.

(D) Antiviral activities of WT and MxB interface 1 mutants. Results are an average of at least four independent experiments, with error bars denoting 95%

confidence intervals.

(E) Total mutant MxB expression levels relative to WT MxB (set to 1). Results are an average of at least three independent experiments, with error bars denoting

standard error.

(F) WT and mutant MxB localization as determined by confocal microscopy.
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and < 0.1%, respectively. To assess the relevance of MxB-CA

binding to restriction of HIV-1 infection, the two parameters

were correlated by scatterplot analysis. The resulting negative

correlation yielded a Spearman rank correlation coefficient p

value of 0.028 (Figure 5B), indicating that the interaction between

MxB and CA plays a role in restriction of HIV-1 infection.

To evaluate if MxB interacts directly with capsid, binding as-

says were performed using recombinant MxB protein purified

from E. coli. The crystallization construct (MxB84YRGK) and full-

length mutant MBP-MxBYRGK/IKM proteins were used in these

experiments to ameliorate the aggregation tendency of the
632 Cell Host & Microbe 16, 627–638, November 12, 2014 ª2014 Els
wild-type protein. As before, binding specificity was assessed

by correcting for the level of pelleted MxB in control reactions

that lacked CA. Approximately 25% of MBP-MxBYRGK/IKM

cosedimented with CA after background (pelleted MxB without

CA) correction (Figure 5C). Although the comparison of this

result to the binding of WT MxB-HA in cell extracts should be

approached with a note of caution, the results nevertheless

indicate that cellular cofactors are not required for the binding

between MxB and HIV-1 CA. In contrast, only �9% of

MxB84YRGK cosedimented with CA (Figure 5C). Although this

level of residual binding was significantly greater than the
evier Inc.



Figure 5. Interactions with Capsid Assemblies by WT and Mutant MxB Proteins
(A) Cell extracts containing HA-tagged MxB were tested for binding to crosslinked CA tubular assemblies. Pelleted proteins resolved by SDS-PAGE were

visualized by western blotting (MxB) or stained with Coomassie blue (CA). Results are an average of five independent experiments with standard errors plotted.

Lane indicators above the representative western blot: i, 20% of input cell lysate in absence of CA; �, pellets from binding reactions in the absence of CA; +,

reactions in the presence of CA. Lane 1 of lower panel, 20% of input CA.

(B) Scatterplot of WT and mutant MxB-HA binding (x axis) versus normalized level of HIV-1 infectivity (y axis). Points denote the geometric mean of each data set.

The comparison exhibited a negative correlation with a significant Spearman rank correlation (p = 0.028).

(C) Binding of purified MxB (with or without CypA or CPSF6313-327), maltose binding protein (MBP) (negative control), or a region of TRIMCyp (CC-Cyp) (positive

control) to crosslinked CA assemblies. Total (T), soluble (S), and pellet (P) fractions resolved by SDS-PAGE were visualized with Coomassie staining and

quantified with ImageJ. Three CA variants were analyzed for binding: A14C/E45C (CA), A14C/E45C/G89V (G89V), and A14C/E45C/N74D (N74D). Quantification

of the binding, with standard errors, from three independent experiments is plotted below the gels. p values from two-sided, unequal variance t tests are shown

for the pelleting comparison for each MxB construct with or without CA.

(D) Visualization of the interaction of MxB constructs with HIV-1 CA tubes. Cryo-EM images of reaction mixtures containing crosslinked CA assemblies (10 mM)

and MBP-MxB1-715 YRGK/IKM (5 mM) or MBP-MxB84-715 YRGK/IKM (5 mM) shows additional protein density decorating the tubes (middle and right panels) that is not

observed in the control tubes without MxB (left). Substantially more decoration of the CA tubes occurs with the full-length MxB construct (middle) than with the

N-terminal truncation construct (right).

(E) Size-exclusion chromatograms of purified MBP-MxBYRGK/IKM (blue), crosslinked CA hexamers (red), and their mixture (green). CA hexamers and MBP-

MxBYRGK/IKM do not bind, as the elution profile of the mixture is the exact superposition of the individual ones. The SDS-PAGE analysis of the peaks (labeled 1, 2,

and 3) is shown.
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background control, significantly less MxB84YRGK as compared

to full-length MBP-MxBYRGK/IKM copelleted with CA (p =

0.002). These data provide evidence of a direct interaction be-

tween MxB and HIV-1 capsid and indicate that the first 84

residues of MxB contribute to the interaction. This is consistent

with the previously published results showing the MxB N termi-
Cell Host &
nus is critical for HIV-1 restriction (Busnadiego et al., 2014; Gou-

jon et al., 2014; K.A.M. et al., unpublished data). At this point

we can only infer that the dimer is the basic CA binding unit of

MxB; multiple attempts to purify recombinant dimerization mu-

tants such as M574D failed to yield soluble protein for binding

studies.
Microbe 16, 627–638, November 12, 2014 ª2014 Elsevier Inc. 633
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As certain CA mutations abolish MxB restriction of HIV-1, we

investigated whether some of these (G89V and N74D) alter

MxB’s ability to bind HIV-1 CA assemblies in vitro. The G89V

mutation abolishes CypA binding (Schaller et al., 2011) and elim-

inates MxB restriction of HIV-1 (Kane et al., 2013). The N74D

mutation abolishes CA binding to the capsid cofactor CPSF6

(Lee et al., 2010; Price et al., 2012) and reduces but does not

eliminate MxB’s ability to restrict HIV-1 (Kane et al., 2013). Inter-

estingly, neither of the two mutations reduced MxB binding to

the CA assemblies in our assay (Figure 5C). These results

show that these functionally important CA residues are not

required for MxB binding.

To further probe the involvement of these CA residues in MxB

binding, we tested whether the presence of CypA or a capsid-

binding peptide of CPSF6 (CPSF6313-327) altered the ability of

MBP-MxBYRGK/IKM to bind CA. Our results show MBP-

MxBYRGK/IKM binds to CA with similar affinity in the presence or

absence of these two CA-binding partners (Figure 5C). Because

we could not saturate the tubes with CypA and were uncertain if

the CPSF6313-327 peptide occupies all available binding sites, it is

not clear whether the binding events are mutually exclusive.

However, as we did not see an increase in pelleted MBP-

MxBYRGK/IKM in the presence of CypA or CPSF6313-327, these

factors do not appear to enhance MxB binding.

The interaction between MBP-MxBYRGK/IKM or MBP-

MxB84-715 YRGK/IKM and CA assemblies was additionally

analyzed by cryo-EM (Figure 5D). Inspection of the cryo-EM

images of the reaction mixtures shows distinct protein densities

decorating the CA tubes that are only seen in the presence of

the MxB constructs (Figure 5D). As expected, the decoration

of CA tubes by MBP-MxBYRGK/IKM was much more pronounced

than for MBP-MxB84-715 YRGK/IKM, confirming both direct protein

binding and the importance of the MxB N terminus in this

interaction.

To probe the oligomeric state of CA required for MxB binding,

we analyzed the ability of MxB to bind soluble CA hexamers.

We incubated purified MBP-MxBYRGK/IKM with crosslinked CA

hexamers and examined their interaction using size-exclusion

chromatography. No interaction was detected between the

two as MBP-MxBYRGK/IKM and CA hexamers eluted from the

size-exclusion column as two distinct peaks at positions corre-

sponding to those of the individual components (Figure 5E).

This result, together with those from the copelleting and cryo-

EM assays, suggests that MxB does not have appreciable affin-

ity for single CA hexamers but binds to capsid assemblies,

implying that MxB may function as a capsid pattern sensor

that only recognizes the assembled CA lattice.

DISCUSSION

MxB is a recently identified HIV-1 restriction factor whose mode

of inhibition is incompletely understood. The research presented

herein establishes a structural and biochemical framework for

understanding the mechanism by which MxB restricts HIV-1.

Our results reveal characteristics of MxB that are required for

its antiviral activity, uncover separate determinants for the func-

tions of MxB and the homologous MxA, and, importantly,

demonstrate a direct interaction between MxB and HIV-1 CA

that requires higher-order capsid assembly. These results pro-
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vide important insight into how MxB may bind viral capsid

and interfere with capsid uncoating-related processes to inhibit

HIV-1.

The structure and sequence of MxB and MxA are similar, but

the two proteins have different antiviral characteristics. These

proteins are dimers in solution, and our data show that, like

MxA, the dimerization of MxB is required for viral restriction.

Contrary to MxA’s mode of restriction that requires further multi-

merization, higher-order oligomerization of MxB is not critical for

HIV-1 restriction. Mutation of residues at the higher-order inter-

face 1 did not alter MxB activity (Figure 4D), while altering the

corresponding residues on MxA abolished its restriction ability

(Gao et al., 2010). This difference may be related to the presence

of a NLS in MxB. The NLS-mediated localization of MxB to the

nuclear envelope may increase its local concentration at the nu-

clear pore, which may mitigate the need for higher-order oligo-

mers to exert its antiviral effects. In addition, we show that

conformational coupling between the GTPase and the stalk

domain, which is important for regulation of GTPase activity

and antiviral function ofMxA, is not necessary inMxB (Figure 2E).

Our identification of MxB as a direct HIV-1 capsid-binding pro-

tein substantially advances our understanding of the mechanism

of HIV-1 restriction by MxB. Our data demonstrate that interac-

tion between MxB and CA is dependent on the first 83 residues

of MxB and does not require other host factors (Figure 5). It has

been well established that the N-terminal residues of MxB are

critical for its anti-HIV-1 activity (Busnadiego et al., 2014; Goujon

et al., 2014). This is partially attributed to the required nuclear

localization of MxB (Kane et al., 2013; K.A.M. et al., unpublished

data). Our results now show the N terminus of MxB is also critical

for its interaction with HIV-1 CA. This is consistent with the recent

report that the N-terminal domain of MxB (91 amino acids),

which includes residues downstream from the NLS, confers

HIV-1 restriction to MxA (Goujon et al., 2014). These results sug-

gest that the direct engagement between MxB and capsid is an

important step in the restriction of HIV-1 by MxB.

During the review of this work, Fricke et al. reported that

ectopically expressed MxB binds higher-order capsid assem-

blies in vitro and that MxB decreases the extent of HIV-1 capsid

uncoating during infection (Fricke et al., 2014). These results

agree with our finding that a direct interaction occurs between

MxB and capsid. In contrast, Fricke et al. concluded that multi-

merization of MxB is important for the interaction with the HIV-

1 core. Our crystal structure shows that the reported truncation

mutations (D572–715 and D623–715) removed the majority of

the stalk domain that is central to MxB dimer formation, and

the reported point mutation (L661K) seems likely to disrupt

MxB folding because it is located within the hydrophobic core

of the stalk. The reported multimerization-disrupting mutations

therefore likely disrupted MxB dimerization, which is consistent

with the importance of dimerization revealed in our study.

Our structural and binding studies provide important insight

into an HIV-1 capsid recognition. We observe binding of MxB

to capsid assemblies, but not individual CA hexamers (Figure 5).

This suggests thatMxB, like TRIM5 restriction factors, is a capsid

pattern sensor that recognizes higher-order CA assemblies (Per-

tel et al., 2011). This is further supported by data showing that CA

residues 207, 208, and 210, which are near the trimeric interface

of CA hexamers, are critical for MxB restriction (Busnadiego
evier Inc.



Figure 6. Conceptual Binding Model of the MxB Dimer to HIV Capsid

(A) The dimension of the MxB dimer matches the spacing (marked by the lines) between either trimers (3-fold axes marked by triangles) or dimers (2-fold axes

marked by eye-shaped symbols) of CA hexamers. TheMxB dimer (top) is colored with both the GTPase and the BSE domains in red and yellow, respectively, and

with the stalk domain of each protomer in green or cyan. The N terminus of MxB is indicated by an oval. The capsid model (bottom) was created by docking the

crystal structure of HIV-1 CA hexamer (PDB ID: 3H4E) to the EM map of HIV-CA helical tube (EMDB accession code: EMD-5136).

(B) Two orthogonal views of a possible bindingmode of theMxB dimer to the capsid at the interfaces of a trimer of CA hexamers. TheGTPase domains ofMxB are

oriented such that the N termini (ovals) of MxB can extend and interact with residues known to be important (207/210, asterisks) at the hexamer interfaces and the

sites (marked by the # signs) where binding of the CPIPB inhibitor led to competitive inhibition of MxB binding to capsid. The flexibility of the MxB N terminus and

the hinge regions may allow MxB to adjust to the changing curvature of the HIV-1 capsid. The pink-colored hexamers are removed in the side view for clarity.

(C) Potential MxB binding to the interfaces of a dimer of CA hexamers. The tan-colored hexamers are removed in the side view for clarity.
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et al., 2014). Furthermore, we show that the N terminus of MxB is

important for theMxB-capsid interaction. These results, together

with our crystal structure, allow us to create a model of an MxB

dimer binding to the CA lattice (Figure 6). The stalk domains pro-

vide proper spacing over theCA lattice, as the distance is�180 Å

between the N termini of the dimer, which matches the distance

between the CA hexamer interfaces (Figure 6A). Each N terminus

is positioned near the interface between either trimers (Figure 6B)

or dimers (Figure 6C) of CA hexamers, in a location amenable to

binding. The predicted MxB-binding sites overlap with the bind-

ing site for the small molecule CPIPB inhibitor (referred to as

compound 1 in Lemke et al., 2013), which is consistent with

the report that this compound could competitively inhibit the

binding of ectopically expressed MxB to CA-nucleocapsid

tubular structures in vitro (Fricke et al., 2014). The hinge regions

and the potentially flexible N terminus of MxB provide plasticity

to adapt to the varying curvature of the CA core. Although the

majority of binding is likely provided by the MxB N terminus, its

GTPase domain and hinge 1 region may also contact the capsid.

This is consistent with our data that the N-terminal deletion

construct MxB84YRGK retained some binding to capsid (Figures

5C and 5D) and that hinge 1 mutations reduced the capsid inter-

action (Figures 5A and 5B). While this model does not provide

detailed information about the binding interfaces, it establishes

a framework for understanding and guiding future studies on

the interaction between MxB and HIV-1 capsid.

MxB likely functions as a critical player in a restriction

pathway involving other host factors that interact with HIV-1

capsid. The capsid-interaction events of MxB and some of

these factors, such as CypA and CPSF6, appear to be indepen-

dent (Figure 5C). Our data show that MxB binds to CA mutants

that abolish MxB’s antiviral activity, demonstrating that the
Cell Host &
mutated CA residues are not critical for binding MxB (Figure 5C).

These CA mutations are important for binding of other cellular

factors including CypA, CPSF6, NUP153, and NUP358 (Lee

et al., 2010; Matreyek et al., 2013; Schaller et al., 2011). Further-

more, the presence of CypA or CPSF6313-327 does not enhance

MxB binding to CA assemblies (Figure 5C). These results sug-

gest that direct interactions between MxB and these CA-binding

proteins are not required, but instead MxB restriction may occur

at an independent step in a pathway that is dependent on

proper interaction between other cellular factors and CA. Alter-

natively, MxB may alter the affinity of other host factors for the

capsid or the nature of their binding such that they become

inhibitory. Taken together, MxB may be able to directly modu-

late or affect other cellular factors to control the stability of the

HIV-1 capsid. This, coupled with the localization of MxB to the

nuclear rim, suggests that MxB may function to interfere with

the proper uncoating and translocation of the HIV-1 capsid

core near the cell nucleus.

EXPERIMENTAL PROCEDURES

Cloning and Expression

MxBFL was cloned into pCDF Duet (Novagen) with an N-terminal MBP tag.

MxB84-715 was cloned into pETDUET-1 (Novagen) with an N-terminal 6xHis

tag. Proteins were overexpressed in E. coli BL21(DE3) cells at 18�C for 18 hr

by induction with 0.5 mM IPTG. MxB with a C-terminal HA was cloned into

the retroviral transfer vector pLPCX (Clontech). Mutations were made by Quik-

Change site-directed mutagenesis (Stratagene) on MxB vector templates.

Protein Purification

Bacterial cells were harvested by centrifugation at 5,000 rpm. Cells were re-

suspended in lysis buffer (50 mM Tris [pH 8.0], 500 mM NaCl, 20 mM imid-

azole, 0.1 mM TCEP) and lysed using a microfluidizer. Cell debris was clarified

by centrifugation at 15,000 rpm for 45 min for 6xHis-tagged construct and at
Microbe 16, 627–638, November 12, 2014 ª2014 Elsevier Inc. 635
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40,000 rpm for 35 min for MBP-tagged constructs. MBP-MxB1-715 constructs

were purified by MBP affinity and size-exclusion chromatography. 6xHis

MxB84-715 constructs were purified by nickel affinity, anion exchange, and

size-exclusion chromatography and were analyzed at each step by SDS-

PAGE.

Crystallization and Data Collection

Crystallization of the protein was performed by the microbatch under-oil

method (Chayen et al., 1990). One microliter of the protein solution (2 mg/ml

in 50 mM Tris [pH 8], 150 mMNaCl, 0.1 mM TCEP), 2 mMDTT, and the precip-

itant solution (0.1 M MES [pH 6.5], 5% PEG4000, 10% 2-propanol, 0.05 M

MgCl) weremixed. Crystals formed at RTwere cryoprotected using the precip-

itant solution with 30% glycerol before freezing in liquid nitrogen. Diffraction

data were collected at the NE-CAT beamline 24ID-E at the Advanced Photon

Source and the beamline X25 at the National Synchrotron Light Source. The

data collection statistics are in Table 1.

Structure Determination and Refinement

The structure was solved using the GTPase domain and the stalk domain of

MxA (Gao et al., 2010, 2011) as search models for molecular replacement us-

ing the CCP4 program Phaser (CCPN4, 1994; McCoy et al., 2007; Vagin and

Teplyakov, 2000). Iterative rounds of model building in COOT (Emsley and

Cowtan, 2004) and refinement with REFMAC5 (Murshudov et al., 1997)

and PHENIX (Adams et al., 2010) were carried out. Data sharpening was per-

formed (Liu and Xiong, 2014) to facilitate model building. The final model has

an Rwork/Rfree of 26.5%/29.9%. The refinement statistics are summarized in

Table 1.

Cells and Infectivity Assays

HOS cells were maintained in Dulbecco’s modified Eagle’s medium (Invitro-

gen) supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin,

and 0.1 mg/ml streptomycin. HOS cells stably transduced with LPCX transfer

vectors were selected and maintained with 2 mg/ml puromycin.

Cells seeded onto 48-well plates were infected with various reporter viruses

as described (Matreyek et al., 2013). Percentages of GFP-positive cells were

determined 48 hr postinfection using a FACSCanto flow cytometer equipped

with FACSDIVA software. Virus inoculates were adjusted to yield �40%

GFP-positive cells in control samples that contained empty LPCX.

Immunofluorescence Confocal Microscopy

Cells cultured on Nunc Lab-Tek II chamber slides (Thermo Scientific) were

fixed with 4% paraformaldehyde for 10 min, washed with phosphate buffered

saline (PBS), and permeabilized with ice-cold MeOH for 10 min. The permea-

bilized cells were blocked with PBS containing 10% FBS for 30 min and

stained with 1:300 dilution of anti-HA antibody 16b12 (Covance). After a

30 min wash with PBS, the cells were incubated for 1 hr with a 1:1,000 dilution

of an Alexa Fluor 555-conjugated goat anti-mouse IgG antibody (Invitrogen),

as well as Hoescht 33342 (Invitrogen) diluted to a concentration of 1 mg/ml. Af-

ter an additional 30 min wash with PBS, the samples were covered with

mounting medium (150 mM NaCl, 25 mM Tris [pH 8.0], 0.5% N-propyl gallate,

and 90% glycerol). The processed samples were analyzed on a Nikon Eclipse

spinning disk confocal microscope at the Dana-Farber Cancer Institute

Confocal and Light Microscopy core.

Western Blotting

Cells pelleted at 3003 g were resuspended in PBS supplemented to contain

0.2% NP-40 and 10 U/ml Turbo DNase in 1X Turbo DNase buffer (Ambion).

After 30 min on ice, mixtures were adjusted to contain 62.5 mM Tris (pH

6.8), 2% SDS, 10% glycerol, 5% b-mercaptoethanol, 100 mM DTT, and

0.001% bromophenol blue. Samples heated at 100�C were separated on

Tris-glycine polyacrylamide gels and transferred to polyvinylidene fluoride

membrane, and MxB-HA was detected with a 1:2,000 dilution of HRP-conju-

gated 3F10 antibody (Roche). b-actin was detected with a 1:10,000 dilution of

HRP-conjugated antibody clone AC-15 (Sigma). The amount of MxB-HA or

b-actin signal in each sample was quantitated relative to the level of each

signal in amatchedWTMxB-expressing sample, which was set to 1, using Im-

age Lab 4.1 (Bio-Rad). The MxB expression ratio was calculated by dividing

the MxB-HA signal with that of b-actin.
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CA Binding Assay with Cell Lysate

Recombinant HIV-1 CA A14C/E45C was expressed in E. coli and purified as

described previously (Pornillos et al., 2009). Crosslinked CA assemblies

were prepared by direct dilution into assembly buffer (50 mM Tris [pH 8.0],

1 M NaCl, 0.2 mM b-mercaptoethanol), incubation at 37�C for 1 hr, and dilu-

tion to the final concentration of 4 mg/ml. HOS cells expressing WT or

mutant MxB-HA were lysed in buffer A (50 mM Tris [pH 7.5], 150 mM

NaCl, 0.5% NP40, 1x complete protease inhibitor [Roche]), and lysates

were clarified by centrifugation at 21,0003 g at 4�C. Approximately 20 mg

of lysate was mixed with assembled CA, yielding final concentrations of

64 mM CA and 5 mg/ml total cell protein, followed by incubation at RT for

30 min. Binding reactions were centrifuged through a 35% sucrose cushion

in PBS at 21,0003 g at 4�C for 30 min. The supernatant was removed, and

the pellet was resuspended in buffer lacking reducing agent. MxB-HA was

detected by western blotting whereas CA was detected by staining with

Coomassie blue.

CA Binding Assays with Purified Proteins

Crosslinked CA (A14C/E45C) tubes were dialyzed overnight at 4�C into as-

sembly buffer (1 M NaCl, 50 mM Tris [pH 8.0]), followed by dialysis into binding

buffer (150 mM NaCl, 50 mM Tris [pH 8.0]) (Pornillos et al., 2009). MxB and

control proteins were spun at 20,0003 g for 30 min at 4�C. MxB (10 mM) and

control proteins in 10.5 ml were added to 10.5 ml CA tubes and incubated at

RT for 1 hr. Subsequently, 7 ml aliquots were withdrawn. The remaining was

pelleted at 20,0003 g for 30 min at 4�C. Total, supernatant, and pellet samples

were analyzed by SDS-PAGE. Copelleting experiments with CypA and

CPSF6313-327 were performed as described with 30 mM CypA and 200 mM

CPSF6313-327.

The interaction between MxB and crosslinked CA (A14C/E45C) hexamers

was examined by size-exclusion chromatography. CA hexamers were assem-

bled as described previously (Pornillos et al., 2009). Samples (200 ml) of MBP-

MxBYRGK/IKM (11.25 mM), CA hexamers (55 mM), and their mixtures were run on

a Superdex 200 10/300 GL. Peak fractions were analyzed by SDS-PAGE. Gels

were quantified with ImageJ.

Cryo-EM

A sample (3 ml) of purified MxB variants or the mixture from the binding assays

was applied onto a glow-discharged Quantifoil (R2/2) grid. Excess fluid on the

grid was blotted with filter paper and then the grid was rapidly frozen in liquid

ethane using a homemade manual freezing device. Frozen grids were trans-

ferred into a Gatan cryoholder and examined with a FEI Tecnai 200 kV Field

Emission Gun transmission electron microscope equipped with a Gatan 4K

3 4K charge-coupled device camera. Low-dose (�20 e�/Å2) images were re-

corded at nominal magnifications of either 29,0003 or 50,0003 at underfocus

values of 2–4 mm.
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