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Abstract

Lentiviruses can infect non-dividing cells, and various cellular transport proteins provide crucial functions for lentiviral
nuclear entry and integration. We previously showed that the viral capsid (CA) protein mediated the dependency on cellular
nucleoporin (NUP) 153 during HIV-1 infection, and now demonstrate a direct interaction between the CA N-terminal domain
and the phenylalanine-glycine (FG)-repeat enriched NUP153 C-terminal domain (NUP153C). NUP153C fused to the effector
domains of the rhesus Trim5a restriction factor (Trim-NUP153C) potently restricted HIV-1, providing an intracellular readout
for the NUP153C-CA interaction during retroviral infection. Primate lentiviruses and equine infectious anemia virus (EIAV)
bound NUP153C under these conditions, results that correlated with direct binding between purified proteins in vitro. These
binding phenotypes moreover correlated with the requirement for endogenous NUP153 protein during virus infection.
Mutagenesis experiments concordantly identified NUP153C and CA residues important for binding and lentiviral infectivity.
Different FG motifs within NUP153C mediated binding to HIV-1 versus EIAV capsids. HIV-1 CA binding mapped to residues
that line the common alpha helix 3/4 hydrophobic pocket that also mediates binding to the small molecule PF-3450074
(PF74) inhibitor and cleavage and polyadenylation specific factor 6 (CPSF6) protein, with Asn57 (Asp58 in EIAV) playing a
particularly important role. PF74 and CPSF6 accordingly each competed with NUP153C for binding to the HIV-1 CA pocket,
and significantly higher concentrations of PF74 were needed to inhibit HIV-1 infection in the face of Trim-NUP153C

expression or NUP153 knockdown. Correlation between CA mutant viral cell cycle and NUP153 dependencies moreover
indicates that the NUP153C-CA interaction underlies the ability of HIV-1 to infect non-dividing cells. Our results highlight
similar mechanisms of binding for disparate host factors to the same region of HIV-1 CA during viral ingress. We conclude
that a subset of lentiviral CA proteins directly engage FG-motifs present on NUP153 to affect viral nuclear import.
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Introduction

Retroviruses integrate their reverse transcribed genomes into

host cell chromosomes to provide a permanent vantage from

which to amplify themselves for subsequent transmission. As the

nuclear envelope physically separates the host chromosomes from

the cytoplasm during interphase, retroviruses have evolved

mechanisms to bypass this natural barrier to the nuclear

compartment. The c-retrovirus Moloney murine leukemia virus

(MLV) is believed to await the dissolution of the nuclear envelope

during mitosis, a mechanism that limits infection by this virus to

actively dividing target cells [1–3]. Lentiviruses such as HIV-1

infect post-mitotic cell subtypes during the establishment of host

systemic infection, and correspondingly harbor mechanisms to

infect cells during interphase, likely circumventing the nuclear

envelope by passing through the channel present in the nuclear

pore complex (NPC) [4,5].

The vertebrate NPC is a large ,120 MDa macrostructure,

composed of ,30 different proteins called nucleoporins (NUPs)

that stack in rings of eight-fold symmetry to form the tubular pore

as well as the attached cytoplasmic filaments and nuclear basket

substructures [6,7]. Approximately one-third of the NUPs harbor

domains rich in phenylalanine-glycine (FG) motifs, commonly

observed as FxF, FxFG, or GLFG patterns [8]. These FG-rich

domains line the central channel of the NPC, as well as the

cytoplasmic and nuclear openings [9], and dictate the selective

passage of macromolecules through the pore; small molecules are

able to passively diffuse, while molecules greater than ,9 nm in

diameter need to be ferried by specialized carrier proteins capable

of interacting with the FG-based permeability barrier [10].

The HIV-1 nucleoprotein substrate for proviral integration,

called the pre-integration complex (PIC), is estimated at ,56 nm

in diameter [11], and thus requires active translocation into the

nucleus. While initial studies suggested that HIV-1 integrase (IN),

matrix, and Vpr proteins, as well as a triple-stranded DNA

structure of the reverse transcribed genome called the DNA flap,

were key viral elements required for PIC nuclear import,

subsequent studies found none of these factors to be essential

[12]. Contrastingly, the viral capsid (CA) protein was shown to be

the major viral determinant for infecting non-dividing cells
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[13,14]. Various host proteins have also been shown to participate

in HIV-1 nuclear import, with perhaps the most promising

candidates emerging from a series of genome-wide RNA

interference (RNAi) screens; factors identified in more than one

of these screens include transportin-3 (TNPO3 or TRN-SR2),

NUP358 (RANBP2), and NUP153 [15–17]. We have been

particularly interested in NUP153, which plays an important

CA-dependent role in HIV-1 PIC nuclear import [18,19].

NUP153 is a FG nucleoporin that predominantly locates to the

nuclear side of the NPC and exchanges dynamically with a

nucleoplasmic population [20]. While NUP153 is anchored to the

nuclear rim of the NPC through its N-terminal domain [21], its C-

terminal FG enriched domain (referred to as NUP153C herein) is

natively unfolded and highly flexible [22]. The ,200 nm long

NUP153C potentially reaches through to the cytoplasmic side of

the NPC channel [23], shifting in spatial distribution in a

transport-dependent manner [24,25]. Human NUP153C contains

29 FG motifs (FxF, FG, and FxFG patterns), which provide a vital

role in NUP153-mediated nucleocytoplasmic transport [26–28].

While numerous studies have demonstrated the functional

significance of CA for HIV-1 nuclear import and integration, the

mechanistic details for these connections are incompletely

understood. Retroviral CA proteins are composed of two a-helical

domains, the N-terminal domain (NTD) and C-terminal domain

(CTD), separated by a short flexible linker. CA multimerizes into

hexameric arrays during particle maturation, while twelve

interspersed pentamers dictate the overall shape of the condensed

viral core [29–32]. While relatively intact cores enter the cell upon

viral-cell membrane fusion, little if any CA remains associated with

the PIC within the nucleus [33–37]. The precise location and

mechanism of CA core disassembly remains controversial: while

initial steps of core uncoating are tied to reverse transcription [38],

subsequent events may involve binding to host proteins. This may

involve cyclophilin A (CypA) and the NUP358 cyclophilin

homologous domain (CHD), both of which bind the cyclophilin

binding loop protruding from the top of the CA NTD [39,40], or

cleavage and polyadenylation specific factor 6 (CPSF6), which

binds a hydrophobic pocket [41] located between a-helices 3 and 4

within the NTD. The small molecule PF-3450074 (PF74), which

inhibits HIV-1 infection by destabilizing incoming CA cores, also

engages this same pocket [42]. CA-containing protein complexes

have been observed alongside the nuclear envelope [43],

suggesting that the ultimate steps of core uncoating may occur

at the nuclear periphery and/or during PIC nuclear transport.

Here, we find that the CA proteins from numerous lentiviruses,

including HIV-1 and equine infectious anemia virus (EIAV),

directly bind NUP153C, with subsequent mapping demonstrating

the importance of individual FG motifs themselves. A panel of

HIV-1 CA mutants highlights the importance of side-chains lining

the CA NTD helix 3/4 hydrophobic pocket, and competition with

both CPSF6 and PF74 support this as the site of NUP153C

binding. Correlation between NUP153 binding and dependence

on endogenous NUP153 expression additionally support the

relevance of this interaction during infection. HIV-1 CA mutant

viruses N57A and N57D were defective for NUP153C binding and

acutely sensitive to the arrest of the cell-division cycle, with a

significant correlation between cell cycle and NUP153 dependen-

cies observed among an expanded set of CA mutant viruses. Our

data support a model whereby partially uncoated cores directly

engage NUP153 FG motifs within the NPC to affect HIV-1 PIC

nuclear import.

Results

NUP153C binds the NTDs of a subset of retroviral CA
proteins

As we previously found CA to be the dominant viral

determinant of the requirement for NUP153 during HIV-1

infection [19], we tested whether a physical interaction between

NUP153 and HIV-1 CA exists. Our initial assay utilized a

recombinant viral fusion protein consisting of HIV-1 CA and

nucleocapsid (NC) proteins, which when assembled in vitro in the

presence of high salt and single stranded nucleic acid forms large

tube-like structures that readily pellet through cushions of sucrose

[29]. In this way, CA-interacting proteins can co-sediment with

the tube structures [18,44]. Full length or various fragments of

HA-tagged NUP153 expression constructs were transfected into

293T cells, and the resulting proteins were tested for their ability to

co-sediment with CA-NC assemblies. Full-length NUP153 (resi-

dues 1–1475) pelleted through the sucrose cushion in a CA-NC

dependent manner (Figure 1A and 1B). The NUP153 N-

terminal domain (residues 1–650) failed to bind CA-NC under

conditions that supported efficient NUP153C (residues 896–1475)

binding. The C-terminal NUP153 deletion mutant comprised of

residues 1–1198 failed to bind, confirming the importance of the

NUP153 FG-repeat domain in binding, and mapping the

interaction to residues 1199–1475 of the full length protein.

We addressed whether the NUP153–CA-NC interaction was

the result of direct protein binding through the use of purified,

recombinant NUP153 protein. We attempted to express full-

length NUP153 fused to glutathione S-transferase (GST) in

bacteria, but despite extensive effort, were unable to define

conditions that yielded usable quantities of GST-NUP153 protein.

Based on our preliminary binding data (Figure 1B), we instead

expressed and affinity purified GST-NUP153C. NUP153C was

liberated from the GST tag by site-specific proteolysis, with the

remaining CA binding studies utilizing tag-free NUP153C protein.

Approximately 40% of the input recombinant NUP153C protein

was recovered during co-sedimentation under conditions where

binding of a negative control GST protein was undetected

(Figure 1C). To test whether NUP153C binds CA in the absence

Author Summary

Lentiviruses such as HIV-1 possess mechanisms to bypass
the nuclear envelope and reach the nuclear interior for
viral DNA integration. Numerous nuclear transport pro-
teins are important for HIV-1 infection, suggesting the viral
nucleoprotein complex enters the nucleus by passing
through nuclear pore complexes. HIV-1 was previously
found to utilize cellular nucleoporin (NUP) 153 protein in a
manner determined by the viral capsid protein. Here, we
show HIV-1 capsid directly binds NUP153 in a phenylala-
nine-glycine motif-dependent manner; such motifs form
the general selectivity barrier that restricts transport
through the nuclear pore. We find that NUP153 binds a
hydrophobic pocket found on capsid proteins from both
primate and equine lentiviruses, suggesting an evolution-
ary predilection for this interaction. The pocket on HIV-1
capsid also binds phenylalanine moieties present in a small
molecule inhibitor of HIV-1 infection, as well as a separate
host factor implicated in the nuclear import pathway. We
found that these molecules compete for NUP153 binding,
providing insight into their mechanisms of action during
HIV-1 infection. These results demonstrate a previously
unknown interaction important for HIV-1 nuclear traffick-
ing, and posit direct binding of viral capsids with
phenylalanine-glycine motifs as a novel example of viral
hijacking of a fundamental cellular process.

Lentiviral Capsid-NUP153 Interactions
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of NC and nucleic acid, his-tagged HIV-1 CA expressed and

purified from Escherichia coli was utilized in Ni-nitrilotriacetic acid

(NTA) pulldown assays. Approximately 30% of input NUP153C

was pulled down by his-tagged HIV-1 CA protein. Notably, this

interaction is likely independent of CA oligomerization, as double

mutant W184A/M185A CA, which is unable to dimerize and

form higher-ordered assemblies [45], pulled-down comparable

amounts of NUP153C (Figure 1D). The isolated CA NTD (CAN)

was expressed as a his-tagged protein and purified to next probe

the binding region within HIV-1 CA; CAN pulled down ,30% of

input NUP153C protein (Figure 1E). Although these data do not

quantitatively address potential CA oligomerization-based affects

on NUP153C binding, the relatively robust interaction with CAN

suggests that NUP153 may efficiently engage monomeric CA

during HIV-1 infection.

The preceding results established a direct interaction between

NUP153 and HIV-1 CA proteins in vitro. We next examined

whether an assay could be constructed to visualize the interaction

in the context of HIV-1 infection. We scored for potential

intracellular interaction by relying upon the potent capability of

rhesus Trim5a (rhTrim5a) to inhibit HIV-1 infection. RhTrim5a
is a cytoplasmically localized restriction factor, capable of blocking

HIV-1 infection at an early post-entry step [46]. While the C-

terminal B30.2 (SPRY) domain recognizes patterns present on the

surface of retroviral CA cores [47,48], the N-terminal RING, B-

box 2, and coiled coil (RBCC) effector domains block infection by

eliciting a combination of inhibitory activities, including prema-

ture disassembly of the viral core [44], proteasomal targeting [49],

and triggering of innate immune signaling [50]. Both naturally

occurring, as well as artificially engineered variants of Trim5 have

been discovered wherein the SPRY domain is replaced by

heterologous coding sequences, retaining viral restriction while

changing the method by which the viral core is recognized

[40,51,52]. In this vein we tested for intracellular recognition

between NUP153C and HIV-1 CA by replacing the SPRY

domain of rhTrim5a with NUP153C, concomitantly introducing

either an internal- or C-terminal HA epitope tag to enable

detection of the fusion proteins by western blotting (Figure 2A).

These constructs, as well as control constructs encoding only the

epitope-tagged rhTrim5 RBCC or NUP153C, were stably

introduced into human osteosarcoma (HOS) cells (Figure 2B).

While a single species of C-terminally HA tagged Trim-NUP153C

of the expected molecular weight was detected by western blot, the

internally tagged construct revealed the protein susceptible to

degradation, with the full-length protein representing only a

minority of the expressed products at steady state (Figure 2B and
2C). Regardless, Trim-NUP153C expressing cells potently re-

stricted HIV-1 infection, yielding consistent 5–10 fold reductions

in viral titer (Figure 2D). The combination of both rhTrim5

RBCC and NUP153C domains was necessary, as neither domain

expressed alone inhibited HIV-1 infection. Knockdown of

endogenous NUP153 acutely attenuates HIV-1 infection with

little or no effect on MLV [19]. Importantly, the observed

attenuation of HIV-1 infection by Trim-NUP153C expression was

Figure 1. NUP153C directly binds the HIV-1 CA N-terminal
domain. (A) Schematic of NUP153 protein, with residue numbers of
domain boundaries indicated. (B) Full length or truncated fragments of
HA-tagged NUP153 extracted from 293T cells were tested for binding to
HIV-1 CA-NC. Pelleted proteins were resolved by SDS-PAGE and
visualized by western blotting with anti-HA antibody 3F10 (top), or

by Coomassie stain (bottom). Input, 20% of binding reaction. CA-NC
was included in the binding reactions as indicated. (C) Recombinant,
tag-free NUP153C and GST purified from E. coli were similarly tested for
binding to CA-NC; proteins were detected with Coomassie stain. (D)
Recombinant NUP153C pulled down with full length his-tagged wild-
type (WT) or W184A/M185A HIV-1 CA, and detected with Coomassie
stain. (E) Recombinant NUP153C pulled down with his-tagged CAN, and
detected with Coomassie stain. Each experiment was repeated at least 3
times, with a single representative result shown.
doi:10.1371/journal.ppat.1003693.g001

Lentiviral Capsid-NUP153 Interactions

PLOS Pathogens | www.plospathogens.org 3 October 2013 | Volume 9 | Issue 10 | e1003693



specific, as infection by an MLV reporter virus was unaffected

(Figure 2D). Similar to parental rhTrim5a, Trim-NUP153C

located to the cell cytoplasm (Figure S1A and S1B) and

prevented HIV-1 from completing reverse transcription (Figure
S1C–F), suggesting that it likely recognizes the HIV-1 CA core in

the cytoplasm shortly after viral entry. We conclude that although

NUP153C in the context of the Trim5 protein likely engages HIV-

1 CA earlier than endogenous NUP153 protein, the novel fusion

nonetheless affords the analysis of the NUP153-CA interaction in

the context of HIV-1 infection. Due to the marginally greater level

of restriction imparted by the internally tagged construct, the

Trim-HA-NUP153C variant was used in subsequent experiments.

Subjecting a panel of divergent retroviral reporter viruses to

Trim-NUP153C inhibition further validated the readout for

intracellular CA core recognition. Primate lentiviruses SIVmac,

SIVagmSab, SIVagmTan, and HIV-2 were similarly sensitive to

Trim-NUP153C inhibition (Figure 3A). Though EIAV was also

sensitive, not all lentiviruses were: neither bovine immunodefi-

ciency virus (BIV) nor feline immunodeficiency virus (FIV) was

inhibited by Trim-NUP153C. The more distantly related a-

retrovirus Rous sarcoma virus (RSV) was also unresponsive. To

correlate the results of Trim-mediated restriction of virus infection

to direct protein binding, a subset of the sensitive (EIAV) and

nonresponsive (MLV and FIV) CAN proteins was purified

Figure 2. Restriction of HIV-1 infection by Trim5-NUP153C fusion proteins. (A) Schematic of Trim-NUP153C fusion and control constructs.
Color code: Trim5 RBCC, brown; rhTrim5a SPRY, auburn; HA-tag, blue; NUP153C, orange. (B) Western blot of HOS cells stably transduced with HA-
tagged Trim-NUP153C fusion or control constructs, detected with antibody 3F10. (C) Western-blot detection of Trim-NUP153C fusion proteins with
anti-HA monoclonal antibodies 3F10 and 16b12. Antibody 3F10 detects full-length Trim-NUP153C-HA whereas antibody 16b12 more faithfully detects
full-length Trim-HA-NUP153C. (D) Infectivity of various doses of HIV-1 (left) or MLV (right) GFP reporter viruses on HOS cells stably expressing various
Trim-based constructs. The results are an average of two experiments, with error bars denoting standard error. Asterisks in panels B and C mark bands
that correspond to the expected mobilities of full length Trim-NUP153C constructs.
doi:10.1371/journal.ppat.1003693.g002

Lentiviral Capsid-NUP153 Interactions
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following their expression in bacteria. EIAV CAN bound

NUP153C as efficiently as HIV-1 CAN, whereas binding to either

MLV or FIV CAN was significantly less efficient (P,0.01)

(Figure 3B and 3C). Reliance on NUP153 during retroviral

infection was compared with CA-NUP153C binding (Figure 3A)

by correlating percent infectivity in the face of NUP153

knockdown [19] (repeated here using HOS cells; Figure 3D).

The resulting Spearman rank coefficient of 0.673 was statistically

significant (P = 0.039) (Figure 3E).

FG motifs within NUP153 dictate CA binding
Mutations within NUP153C were made to decipher the

components of NUP153 critical for binding. As the HIV-1

restriction assay was higher throughput than the expression and

purification of separate NUP153C proteins, we first engineered

mutations within the Trim-NUP153C fusion construct. Since the

starting fusion construct contained the entire ,580 amino acid

NUP153C, we generated cell lines stably expressing Trim fusion

proteins with roughly quarter-size deletions of NUP153C, and

determined the extent to which these constructs inhibited HIV-1

and EIAV infection, using MLV and FIV as negative controls

(Figure 4A and 4B). Relative levels of HIV-1 and EIAV infection

were compared to ease the interpretation of results to Trim-

NUP153C mediated restriction; parental Trim-NUP153C yielded

an HIV-1 to EIAV infectivity ratio of ,0.41 (Figure 4B).

Deletion of residues 896 to 1045 at the N-terminus of NUP153C

resulted in a construct that potently inhibited HIV-1 infection to a

level ,8 fold greater than the full-length construct, yet lost the

ability to inhibit EIAV, yielding an HIV-1 to EIAV infectivity

ratio of ,0.01 (Figure 4B). Contrastingly, deletion of C-terminal

residues 1350 to 1475 resulted in a protein still capable of

inhibiting EIAV infection to a level comparable to the full-length

construct, yet incapable of inhibiting HIV-1 infection beyond the

level of the control viruses, resulting in an infectivity ratio of

,4.70. These effects were specific to sequences deleted in the

preceding constructs, as neither internal deletion noticeably

perturbed the original Trim-NUP153C restriction pattern; both

constructs displayed the same slight advantage to inhibit HIV-1

infection over EIAV, with HIV-1 to EIAV infectivity ratios similar

to the full-length construct. Western blotting confirmed that each

Figure 3. Diverse lentiviruses bind NUP153C. (A) Transduction efficiencies of retroviral GFP reporter viruses in Trim-NUP153C expressing cells
normalized to infection in mock transduced cells, which were set to 100%. Results are the geometric mean of 4 experiments, with error bars denoting
95% confidence intervals. (B) HA-NUP153C expressed in 293T cells was pulled down by the indicated his-tagged retroviral CAN proteins. Captured
proteins resolved by SDS-PAGE were western blotted with antibody 3F10 alongside a standard curve of input protein. The results are an average of 5
experiments, with error bars denoting 95% confidence intervals. A representative western blot is shown. (C) SYPRO Ruby detection of retroviral CAN

pull-down of purified NUP153C. The results are an average of two experiments, with error bars denoting standard error; one representative gel is
shown. (D) (left) Retroviral infectivities in HOS cells knocked down for NUP153 expression as compared to cells treated with a non-targeting short
interfering (si) RNA control [19]. The results are the geometric mean of at least 4 experiments, with error bars denoting 95% confidence intervals.
(right) Western blot detection of control or NUP153 knockdown HOS cells with antibody mab414, which also detects NUP358. (E) Scatter plot
comparing relative retroviral infectivities under each condition.
doi:10.1371/journal.ppat.1003693.g003
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deletion construct was expressed at roughly similar levels

(Figure 4C). The mapping of the HIV-1 binding determinant

on NUP153C to residues 1350–1475 by Trim-mediated restriction

notably coincides with our preliminary identification of the region

C-terminal to residue 1198 using CA-NC tubes and HA-tagged

NUP153 deletion constructs (Figure 1B).

We next focused on the initial quarter of NUP153C for its

importance in mediating restriction of EIAV infection. Stable cell

lines expressing only the first quarter of NUP153C fused to the

Trim RBCC, as well as smaller derivatives of the NUP153C

sequence, were generated (Figure 5A). Residues 896–949, which

yielded the smallest construct capable of restricting EIAV infection

(Figure 5B), harbored only two of the 29 FG motifs present

within NUP153C. The importance of these FG motifs in mediating

EIAV restriction was tested by substituting four consecutive

alanine residues for each corresponding FKFG sequence. The

combination octa-alanine 903A/924A Trim-NUP153C mutant

construct lost its ability to inhibit EIAV infection despite being

expressed at a level equal to or greater than unmodified Trim-

NUP153C (Figure 5B and 5C). The 903A/924A mutant

moreover retained potent HIV-1 restriction. Separate mutation

of each motif revealed 924-FKFG-927 as the dominant FG

sequence for mediating EIAV restriction.

Sequence components of NUP153C that mediated restriction of

HIV-1 infection were investigated next. Attempts to recover cells

expressing the responsible C-terminal quarter of NUP153C

(residues 1350–1475) fused to Trim RBCC were unsuccessful.

We instead undertook the alternative strategy to internally delete

segments of residues 1350–1475 from the full-length Trim-

NUP153C construct (Figure 5D). Deletion of residues 1410–

1447 selectively diminished inhibition of HIV-1 without affecting

EIAV, yielding an increased HIV-to-EIAV infectivity ratio of 2.7,

while deletion of residues 1350–1410 did not drastically alter the

ratio from that observed with the full length construct (Figure 5E
and 5F). As residues 1410–1447 contained only one FxFG and

one FxF motif, these were mutated to alanine residues, initially in

the context of the D1350–1410 construct. Combinatorial alter-

ation of both tetra- and tri-peptides reduced restriction of HIV-1

without significantly affecting EIAV restriction (HIV-1/EIAV

infectivity ratio = 2.29). Separate mutation showed this effect was

largely, if not entirely due to 1415-FTFG-1418, and the 1415A

mutation largely prevented restriction of HIV-1 in the full-length

construct as well (infectivity ratio = 2.17). Combined, these results

highlight the importance of FG motifs for Trim-NUP153C

mediated restriction of HIV-1 and EIAV infection. Moreover,

different FG motifs appear to selectively recognize HIV-1 versus

EIAV CA proteins.

We subsequently tested for Trim-NUP153C FG motif recogni-

tion of EIAV and HIV-1 CA proteins in vitro. HA-tagged

NUP153C or analogous quarter deleted fragments expressed in

293T cells were used as bait for pull-down by various his-tagged

retroviral CAN proteins (Figure 6A). The construct lacking

residues 1045–1198 was expressed far less than the other

constructs, and was not interpreted. As expected (Figure 3B),

none of the constructs bound MLV CAN to levels greater than

those observed with beads alone. Consistent with the results from

Trim-NUP153C restriction, the protein lacking residues 1350–

1475 was selectively bound less well by HIV-1 CAN. Contrast-

ingly, EIAV CAN bound all of the fragments tested, including the

fragment that lacked residues 896–1045.

We further tested whether HIV-1 CAN binding was traceable to

specific FG motifs. HA-NUP153C containing the 1415-FTFG-

1418 tetra-alanine replacement bound HIV-1 CAN essentially as

well as the unmutated fragment (Figure 6B). Since we observed

strongly diminished binding when the last quarter of HA-

NUP153C was deleted (Figure 6A), we next mutated all 7 of

the FG motifs within this segment to alanines (HA-

NUP153C76FG/A). The combination of these mutations selec-

tively abrogated binding of HA-NUP153C to HIV-1 CAN;

importantly, effective binding of the mutant protein to EIAV

CAN was retained (Figure 6B). Decreased D1350–1475 and

76FG/A mutant binding to HIV-1 CAN was also observed with

purified NUP153C proteins. HIV-1 CAN bound purified

NUP153C (0.5 mM) in a dose-dependent manner, revealing a

Figure 4. Different NUP153C sub-regions mediate Trim-NUP153C restriction of EIAV versus HIV-1 infection. (A) To-scale schematic of
NUP153C sequences encoded in various Trim-NUP153C constructs. Red lines represent boundaries of quarter-sized NUP153C sub-regions, while black
lines denote the locations of FG motifs. (B) Infectivity of retroviral GFP reporter viruses on HOS cells stably expressing full-length or quarter-deleted
Trim-NUP153C constructs, normalized to infection in mock transduced cells. Data represent the geometric mean of 5 experiments, with error bars
denoting 95% confidence intervals. HIV-1 to EIAV ratios of infectivity are shown, with associated standard error. (C) Western blot of HOS cells stably
transduced with Trim-NUP153C fusion constructs detected with antibody 16b12. Asterisks denote bands corresponding to the expected mobilities of
full length or mutated Trim-NUP153C constructs.
doi:10.1371/journal.ppat.1003693.g004
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corresponding Kd of ,28.3 mM at half-maximal saturation

(Figure 6C). Although CAN displayed some affinity for

NUP153CD1350–1475 and NUP153C-76FG/A, the shapes of

these linear response curves were notably different from the

unmutated protein, and half-maximal saturation was not reached

under these assay conditions.

We hypothesized that differing states of CA multimerization

might contribute to the partially overlapping specificities observed

in the CAN pull-down (Figure 6A and 6B) versus Trim-

NUP153C restriction (Figure 5E) assays. To test this, assembled

CA-NC tubes were substituted for monomeric CAN protein.

Under these conditions, the 1415A mutant protein displayed

significantly diminished binding, similar to the effects observed

with the 76FG/A and D1350–1475 mutant proteins (P,0.01)

(Figure 6D). These findings seemingly agree with the results of

the Trim-NUP153C mediated restriction assays (Figure 4B
and 5E).

Side-chains proximal to a common hydrophobic pocket
in HIV-1 CAN mediate NUP153C binding

We and others previously observed that various CA mutant

viruses exhibit altered sensitivity to NUP153 knockdown [18,19].

Figure 5. The importance of FG motifs for Trim-NUP153C mediated inhibition of HIV-1 and EIAV infection. To-scale schematics (A and
D), normalized infection data (B and E), and western blotting (C and F) as described for Figure 4. Infection data are the geometric mean of at least 4
experiments, with error bars denoting 95% confidence intervals. Inverted grey triangle (panels A and D) denotes area of missense mutation.
doi:10.1371/journal.ppat.1003693.g005
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We next characterized an expanded set of CA mutant viruses for

altered sensitivity to Trim-NUP153C restriction. Mutants were

selected based on prior descriptions of pre-integrative defects

during HIV-1 infection. Alteration of CA residue(s) Pro38, Glu45,

Thr54/Asn57, or Gln63/Gln67 can effect core stability

[13,38,53,54], whereas Thr54, Asn57, Lys70, Asn74, Gly89,

Pro90, Ala92, Gly94, and Thr107 mutants can alter dependencies

on various host proteins, including CPSF6, TNPO3, NUP358,

CypA, or NUP153 [18,19,40,41,55–58]. As a number of these

mutants exhibit drastically diminished overall levels of infectivity

(Figure 7A, top), an unrelated IN mutant virus (D167K), which

infects cells at ,8% of the level of wild-type (WT) HIV-1 [59], was

included to control for our ability to reproducibly measure

restriction at reduced viral titers. While the IN mutant virus was as

sensitive as the WT virus to Trim-NUP153C restriction, a number

of CA mutant viruses exhibited significantly reduced susceptibility

(P,0.001) (Figure 7A, bottom). Included among these were

CypA and NUP358 CHD binding mutants G89V and P90A

[40,55], as well as mutants E45A, T54A/N57A, N57A, N57D,

Q63A/Q67A, Q67A, K70R, and N74A.

As these CA mutant viruses could resist Trim-NUP153C

restriction for any number of reasons, we tested for direct binding

defects by pulling down NUP153C with correspondingly purified

CAN mutant proteins. Residue Asn57 was critical for binding, as

mutant proteins T54A/N57A, N57A, and N57D were strongly

diminished in their abilities to pull down NUP153C (Figure 7B).

Although not critical for binding, both Lys70 and Asn74 appeared

to participate: mutation of Lys70 to arginine diminished binding

Figure 6. FG motifs determine NUP153C binding to HIV-1 CAN. (A) Pull-down of full-length or quarter deleted HA-NUP153C by HIV-1, EIAV, or
MLV CAN proteins, detected with antibody 3F10. (B) Pull-down of WT NUP153C, FG-motif tetra-alanine mutant 1415A, or combinatorial 76FG/A
mutant by beads alone (none, grey), HIV-1 (red), MLV (blue), or EIAV (green) CAN proteins, as detected by western blot with antibody 3F10. Results are
an average of at least 4 experiments, with error bars denoting standard error. (C) Purified NUP153C (black circles, solid line), NUP153CD1350–1475
(purple triangles, fine dotted line), and NUP153C76FG/A (brown diamonds, coarse dotted line) proteins were incubated with various concentrations
of HIV-1 CAN and a constant amount of Ni-NTA beads. Data points represent the mean and standard error of at least three experiments, fit with non-
linear regression curves. The dissociation constant of NUP153C binding was calculated by averaging concentrations of half-maximal binding for 5
individual experiments, with associated standard error. (D) Sedimentation of WT NUP153C, FG-motif tetra-alanine mutant 1415A, combinatorial
76FG/A mutant, or NUP153CD1350–1475 after incubation with buffer alone or assembled CA-NC. Results are an average of 6 experiments, with error
bars denoting 95% confidence intervals. Representative western blotting results are shown.
doi:10.1371/journal.ppat.1003693.g006
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while mutation to alanine enhanced binding; contrastingly,

mutation of Asn74 to alanine diminished binding, while mutation

to aspartic acid enhanced binding to NUP153C. The Q63A/

Q67A mutation marginally diminished binding by ,1.3 fold. This

binding hierarchy was also observed for HA-NUP153C protein

expressed in mammalian cells, with Asn57 again proving key for

the interaction, and mutants K70A and N74D yielding hyper-

binding activity (Figure S2). Overall, CA mutant viral sensitivities

to Trim-NUP153C restriction correlated well with CAN mutant

binding to NUP153C protein in vitro (Figure 7C).

As we predict that mutant viruses that require NUP153 for

infection also bind NUP153C, we compared the sensitivities of CA

mutant viruses to NUP153 knockdown with their susceptibility to

Trim-NUP153C mediated restriction. We observed that CA

mutant viruses that require endogenous NUP153 for infection

were also sensitive to Trim-NUP153C mediated restriction. A

strong correlation supported this relationship across the entire

panel of CA mutant viruses (Figure 7D). This included NUP153C

loss-of-binding mutants T54A/N57A, N57A and N57D, which

retained approximately 85%, 102% and 58% of their infectivity,

respectively, upon NUP153 knockdown.

The NUP153C binding site overlaps with those for PF74
and CPSF6

Residues Asn57, Lys70, and Asn74, highlighted in our binding

assays, surround a hydrophobic pocket within CAN formed by a
helices 3 and 4, and this pocket has been shown to be the binding

site of the small molecule inhibitor PF74 [42] (Figure 8A). To

Figure 7. HIV-1 CA mutant-NUP153C binding and sensitivity to Trim-NUP153C restriction or NUP153 depletion. (A) (top) Equal reverse
transcriptase (RT) cpm of WT and HIV-1 mutant viruses plated on HOS cells, with resulting infectivities normalized to WT virus. (bottom) Percent
infectivity of viruses in Trim-NUP153C expressing HOS cells, normalized to mock transduced control cells. Graphs show the mean of at least 5
experiments, with error bars denoting 95% confidence intervals. (B) Purified NUP153C pull-down by WT or the indicated mutant his-tagged HIV-1 CAN

protein, with recovered proteins resolved by SDS-PAGE and detected by SYPRO Ruby stain. Results are an average of 5 experiments, with error bars
denoting 95% confidence intervals. A representative staining result is shown. The dotted line highlights the level of NUP153C binding to WT CAN

protein. (C) Scatter plot of NUP153C recovery in pull-down assays (panel B) compared to percent infectivity in Trim-NUP153C expressing cells (panel A,
lower). Points are color-coded based on NUP153C binding phenotype: grey, not significantly different from WT; white, significantly decreased from
WT; black, significantly increased from WT. (D) Scatter plot of normalized infectivity of CA mutant viruses in Trim-NUP153C expressing cells compared
to the average infectivity of three experiments when endogenous NUP153 was knocked down. The comparison exhibited a significant Spearman rank
correlation (P,0.0001). Points are color-coded as in panel C, except for CA mutants not tested for binding, which are denoted with ‘‘x’’ symbols.
doi:10.1371/journal.ppat.1003693.g007
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probe potentially similar binding modes, we tested whether PF74

could compete for HA-NUP153C binding to CAN (Figure 8B).

PF74 indeed competed for binding to CAN in a dose-dependent

manner, with an IC50 of ,13.6 mM. While PF74 binds WT and

N74D CAN proteins similarly [41], the small molecule was less

effective at competing for HA-NUP153C binding to N74D CAN,

yielding an IC50 of 145.3 mM, perhaps due to the increased

binding observed between NUP153C and N74D CAN (Figure 7B
and S2). PF74 does not bind K70A mutant CAN [41], and

accordingly did not compete for HA-NUP153C binding to this

mutant protein (Figure 8B).

This same pocket also engages the mRNA splicing cofactor

CPSF6 [18,41,51], which was first implicated in HIV-1 biology by

the ability for an exogenously expressed C-terminal truncation

mutant CPSF6358 to restrict PIC nuclear import [18]. Though

vastly differing molecules, co-crystal structures of PF74-CAN and

CPSF6 (residues 313–327)-CAN complexes revealed that each

exhibit nearly identical insertions of methyl benzyl residues

(Phe321 in the case of CPSF6) within the helix 3/4 pocket, in

both cases forming two hydrogen bonds with the carboxamide

side-chain of CA residue Asn57 (Figure 8A and 8C). Based on

these observations, we tested whether purified NUP153C could

compete with full-length CPSF6 protein for binding to CA. HA-

tagged CPSF6 expressed in 239T cells was incubated with HIV-1

CA-NC tubes prior to centrifugation through a 20% sucrose

cushion. CPSF6 pelleted only in the presence of CA-NC

(Figure 8D). This interaction indeed required binding to the

CAN hydrophobic pocket, as excess PF74 counteracted it. We

additionally observed that co-incubation with purified NUP153C

significantly diminished CPSF6 binding (P,0.0001) by ,7 fold as

compared to the level observed in the absence of competing

factors. This competition was specific, as NUP153C mutants

D1350–1475 and 76FG/A, both of which exhibit greatly

diminished binding to CA-NC (Figure 6), were significantly less

effective at competing for CPSF6 binding (P,0.05) (Figure 8D).

CA residues that mediate binding to NUP153C and CPSF6

were further analyzed by assessing CA mutant sensitivities to

restriction by the artificial restriction factor Trim-CPSF6358

(Figure 8E), a larger derivation of the Trim-CPSF6 fusion

proteins previously tested [51]. Though conferring similar levels of

restriction, far fewer of the CA mutant viruses were able to resist

Trim-CPSF6358 inhibition (Figure 8F, red data points) compared

to Trim-NUP153C (black points). CypA binding mutants G89V

and P90A were partially resistant to Trim-CPSF6358 restriction,

whereas N57A, N74A, and N74D in large part conveyed full

resistance. The N57A and N74D changes were notably previously

shown to prevent binding of CAN to the CPSF6 peptide [41].

Interestingly, changes at Asn57 and Asn74 conferred distinguish-

able resistance profiles to Trim-NUP153C versus Trim-CPSF6358:

both conservative N74D and non-conservative N74A changes

rendered HIV-1 resistant to Trim-CPSF6358, while only N74A

rendered the virus partially resistant to Trim-NUP153C

(Figure 8F). Contrastingly, both conservative and non-conserva-

tive Asn57 changes prevented Trim-NUP153C recognition, while

the conservative N57D mutant remained as sensitive to Trim-

CPSF6358 restriction as the WT virus.

The breadth of CA mutants restricted by Trim-CPSF6358 in

HOS cells appeared to contrast with prior results of CPSF6358-

mediated restriction of HIV-1 in Hela cells, where many of the

same CA mutations conferred resistance to inhibition [60]. We

confirmed these phenotypes in HOS cells, where we observed that

many additional CA mutant viruses resist CPSF6358-mediated

restriction (Figure S3). Many of the CA mutant viruses selectively

resistant to CPSF6358 over Trim-CPSF6358 restriction were also

insensitive to endogenous NUP153 knockdown, resulting in a

moderate correlation between CA mutant sensitivities to

CPSF6358 restriction and NUP153 knockdown (Figure 8G).

PF74 destabilizes the structure of purified CA cores and can

inhibit reverse transcription, which likely accounts for at least part

of its antiviral activity [61]. We assessed whether PF74 could

additionally antagonize NUP153C engagement by CA in the

context of HIV-1 infection, given the caveat that we could not

unambiguously correlate data from protein binding assays

(Figure 8B) with effects from PF74-induced capsid destabilization

in cells. PF74 exhibited dose-dependent inhibition of WT HIV-1

and N74D CA mutant viral infection, but had no effect on CA

mutant T54A/N57A, which lacks the critical Asn57 side-chain

necessary for PF74 binding [41] (Figure 9A, upper panel;
results replotted below to reveal EC90 values under conditions of

Trim-NUP153C restriction). WT virus was noticeably less sensitive

to PF74 in Trim-NUP153C expressing cells, with an EC90 of

5.65 mM as opposed to 0.65 mM in control cells (Figure 9A). The

competing effect of PF74 on Trim-NUP153C inhibition seemingly

occurred between the concentrations of 0.1 and 1 mM (light green

shading in Figure 9), as the inhibition curves within the two cell

lines were nearly superimposable outside of these concentrations.

N74D CA mutant virus also exhibited a shift in the PF74 EC90

concentration in Trim-NUP153C cells, though this occurred at

higher PF74 concentrations than with the WT virus. Interestingly,

an almost identical effect was observed with WT virus when PF74

was titrated onto NUP153 knockdown cells; the EC90 shifted from

0.54 mM to 5.41 mM, with the same window of concentrations

likely accounting for the discrepancy in inhibition curves

(Figure 9B). While the exact mechanism of NUP153 antagonism

– direct, or indirect through the alteration of the state of CA

multimerization – is difficult to discriminate, the nearly superim-

posable interference profiles of PF74 in Trim-NUP153C express-

ing and NUP153 knockdown cells support the relevance of the

Trim-NUP153C restriction assay as a surrogate readout for the

engagement of endogenous NUP153 protein by the virus.

An analogous pocket in EIAV CA mediates binding to
NUP153C

Retroviral CAN proteins exhibit remarkable similarity in

secondary and tertiary structure despite marked differences in

primary sequence [62,63]. With the exception of HIV-1 residue

Gln67, the previously described polar residues flanking the helix

3/4 hydrophobic pocket (Asn57, Lys70, and Asn74 in HIV-1)

exhibit variability across divergent retroviruses (Figure 10A,

yellow boxes). While HIV-2 and SIVmac only differ at these

positions with Arg69 in place of HIV-1 Lys70, EIAV exhibits

greater difference: Leu71 corresponds to HIV-1 Lys70, and EIAV

Asp58 and Asp75 correspond to HIV-1 Asn57 and Asn74,

respectively (Figure 10B). These differences may account for the

resistance of EIAV to inhibition by PF74 (Figure 10C) and

CPSF6358 [51], which we confirmed using HOS cells expressing

Trim-CPSF6358 (Figure 10D). As Asp58 exhibits similar physi-

ochemical properties as its HIV-1 Asn57 counterpart, we mutated

this as well as residue Asp75 to test their contributions to

NUP153C binding. Similar to HIV-1 mutant N57A, EIAV CA

mutant D58A was poorly infectious (Figure 10E), and the

corresponding CAN protein was unable to pull down appreciable

levels of NUP153C protein (Figure 10F). Contrastingly, EIAV

CA mutant D75A behaved similar to WT EIAV (Figure 10E
and 10F). The Trim-NUP153C sensitivities of these viruses

corresponded with the binding profiles of their CAN proteins:

D58A was completely insensitive to Trim-NUP153C mediated
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Figure 8. NUP153C competes with molecules that bind the HIV-1 CAN hydrophobic pocket. (A) X-ray crystal structure (pdb: 26de) of
compound PF74 (yellow) bound to HIV-1 CAN (green). Critical CAN side-chains (labeled) are shown as sticks, with oxygen and nitrogen atoms red and
blue, respectively. Hydrogen bonds are shown as black dashes, with distances labeled. The phenylalanine moiety in PF74 is indicated by the black
arrow. (B) PF74 competition of HA-NUP153C binding to WT or mutant his-tagged HIV-1 CAN. Recovered HA-NUP153C was detected with antibody
3F10 and quantitated alongside a standard curve of serially diluted HA-NUP153C-containing lysate. Baseline background signal observed with T54A/
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restriction, while D75A remained as sensitive as WT EIAV

(Figure 10G).

Comparison of NUP153 requirement and cell cycle
dependence

Changes at Asn57 in HIV-1 CA have previously been

associated with cell cycle dependence: T54A/N57A infection

was attenuated in both chemically arrested cell lines and non-

dividing primary macrophages [13,64], and the N57A mutant

virus was recently shown to lose infectivity upon chemical arrest of

Hela cells [40]. We confirmed the importance of Asn57, as well as

other previously observed cell cycle dependent phenotypes, with

our panel of CA mutant viruses; alanine substitution of residue

Glu45, Thr54, Asn57, or Gln67 rendered the virus significantly

sensitive to growth arrest (Figure 11A and 11B). Notably, we

found even the conservative N57D substitution rendered the virus

as, if not more sensitive, than these mutants to growth arrest. A

handful of CA mutant viruses have been described to be sensitive

to cell cycle arrest in Hela cells in a CypA-dependent manner

[64,65]. We found N57A and N57D CA mutant viruses to remain

highly cell cycle dependent when the interaction with CypA was

blocked by the addition of cyclosporine during infection

(Figure 11C).

Based on the coincident NUP153-insensitive and cell cycle

dependent phenotypes of Asn57 mutant viruses, we tested the

N57A CAN was subtracted, and values were normalized to that of the DMSO control (2% DMSO final concentration in each sample). Results are an
average of at least 2 experiments, with error bars denoting standard error. Representative western blotting results are shown. (C) X-ray crystal
structure (pdb: 4b4n) of a peptide from CPSF6 (backbone carbon atoms shown as grey sticks) bound to CAN (green) in the same orientation as in
panel A. Side-chains and hydrogen bonds are represented as in panel A. The CPSF6 Phe321 side chain is indicated by the black arrow. (D) Binding of
HA-tagged, full-length CPSF6 protein in 293T cell extract to HIV-1 CA-NC protein, and competition with purified NUP153C or mutants thereof. Results
of 5 experiments were normalized to the level of CPSF6 binding observed in the absence of competing factors, with error bars denoting standard
error. (E) Western blot of HOS cells stably expressing Trim-CPSF6358 or CPSF6358, detected with antibody 3F10. (F) CA mutant virus sensitivities to
Trim-NUP153C (black) and Trim-CPSF6358 (red) restriction, as compared to cells transduced with an empty vector. Results are an average of at least 3
experiments, with error bars denoting 95% confidence intervals. (G) Scatter plot of CA mutant sensitivities to NUP153 knockdown compared with
sensitivities to inhibition by CPSF6358.
doi:10.1371/journal.ppat.1003693.g008

Figure 9. PF74 counteracts HIV-1 similarly in the face of Trim-NUP153C restriction or NUP153 knockdown. Mock transduced and Trim-
NUP153C expressing (A) or non-targeting control and NUP153 knockdown (B) HOS cells were infected with equal RT-cpm of denoted viruses in the
presence of various PF74 concentrations. Results are shown as infectivity normalized to vehicle only control cells (top), or vehicle only infection for
each cell type (bottom) to calculate EC90 values. Dashed lines represent Trim-NUP153C or NUP153 knockdown results in panels A and B, respectively.
Results are an average of at least 3 experiments, with error bars denoting standard error. Calculated EC90 values are displayed with standard error.
doi:10.1371/journal.ppat.1003693.g009
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association between NUP153 requirement and cell cycle depen-

dency in the context of our expanded panel of mutant viruses. We

observed a moderately strong inverse correlation between

requirement for NUP153 and cell cycle dependence during

infection (Figure 11D). Notably, of the viruses tested in our

panel, all of the ones that were cell cycle dependent were NUP153

independent. The correlation however was not absolute, as N74D,

G89V, P90A, and T107N mutant viruses did not require NUP153

for infection yet remained cell cycle independent. There was a

moderate correlation between cell cycle dependence and Trim-

NUP153C resistance (Figure 11E). We observed a moderate to

low correlation between cell cycle dependence and CPSF6358

mediated restriction, and no correlation with Trim-CPSF6358

mediated restriction (Figure 11F and 11G). These results reveal

that cell cycle dependence is associated with NUP153 indepen-

dence, and that this relationship likely depends on CA-NUP153

binding.

Discussion

NUP153 FG motif binding within the CA helix 3/4 cavity
Green fluorescent protein (GFP)-tagged NUP153 expressed in

animal cell lysate was recently shown to co-sediment with HIV-1

CA-NC tubes in vitro [66]. We confirmed this observation for

HA-tagged protein, and extended it by using purified recombinant

protein to demonstrate direct binding between the FG-enriched

NUP153C and the HIV-1 CA NTD. Mutation of CA residue

Asn57, Lys70, or Asn74, which each flank the hydrophobic pocket

between CA a-helices 3 and 4, perturb binding of NUP153C

protein to HIV-1 CAN. Furthermore, NUP153C competes with

PF74 and CPSF6 for binding, both of which engage the same

pocket. Notably, co-crystal structures between HIV-1 CAN and

the latter two molecules exhibit an almost identically situated

benzyl ring within the hydrophobic cavity, with the amide

nitrogen and carbonyl oxygens of this phenylalanine moiety each

forming a hydrogen bond with the side chain of Asn57 [41]

(Figure 8). This observation, in conjunction with our finding that

FG motifs within NUP153C strongly contribute to binding with

CAN, suggest that the phenylalanine moieties of specific FG motifs

found in NUP153C likely take on a similar conformation during

binding. We accordingly speculate that hydrogen bonding with

Asn57 underlies the FG motif interaction, as both N57A and

N57D mutations abrogated binding. While originally described to

support CPSF6 binding [41], the high degree of amino acid

conservation within this region of CA amongst primate lentiviruses

likely also reflects the requirement for binding to NUP153 during

virus infection [19].

Relevance of FG motif binding for NUP153 dependency
during HIV-1 infection

Supporting the relevance of the NUP153-CA interaction, both a

divergent set of retroviruses and a targeted set of CA missense

Figure 10. Mode of NUP153C binding to EIAV CA. (A) Alignment of residues corresponding to HIV-1 CA Leu56 through Asn74 among various
retroviruses. Residues that significantly affected HIV-1 CAN binding with NUP153C are highlighted in yellow. (B) Alignment of HIV-1 CAN (green, pdb:
3mge) and EIAV CAN (gray, pdb: 1eia), with side-chains surrounding the pocket shown as sticks. (C) Retroviral sensitivities to inhibition by PF74. Color
codes: HIV-1, green; SIVmac, black; MLV, red; EIAV, orange; BIV, blue; FIV, purple. Results are an average of two experiments. (D) Retroviral sensitivities
to inhibition by Trim-CPSF6358. Results are an average of 3 experiments. (E) Infectivity of RT-cpm matched EIAV GFP-reporter viruses carrying CA point
mutations. Results are an average of 3 experiments. (F) Pull-down of purified NUP153C by EIAV point mutant CAN proteins. Results are an average of 2
experiments. (G) Sensitivity of EIAV CA point-mutant viruses to Trim-NUP153C. Results are an average of 4 experiments. Error bars in each panel
denote standard error.
doi:10.1371/journal.ppat.1003693.g010
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mutants exhibited significant correlations between CA binding to

NUP153C – either tested in vitro or inferred through Trim-

NUP153C recognition – and requirement for endogenous

NUP153 protein during infection (Figures 3 and 7). Notably,

loss-of-binding CA mutant viruses T54A/N57A, N57A, and

N57D infected cells independent of endogenous NUP153 expres-

sion. The relationship between NUP153 binding and host factor

requirement was consistent with PF74 sensitivity as well; while

potentially mediated through an indirect effect on uncoating, PF74

interfered with Trim-NUP153C restriction at the same concen-

trations that it antagonized the inhibition of infection caused by

NUP153 knockdown (Figure 9).

Woodward and colleagues reported that ectopically-expressed

NUP153C protein imparted an approximate twofold defect on

HIV-1 infection [67], a result we did not reproduce despite

efficient NUP153C expression (Figure 2). By contrast, appending

NUP153C to the RBCC domains of rhTrim5a resulted in potent

HIV-1 restriction, allowing us to infer the results of NUP153C

binding to the CA shell during virus infection. NUP153 has been

shown to bind HIV-1 IN [67], and though we observed minimal

binding (#1% of input IN recovered by GST-NUP153C pull-

down; Figure S4), it was comparably weaker than our findings

with HIV-1 CA (30–40% of input NUP153C recovered), and was

less correlative with lentiviral requirement for endogenous

NUP153 (Figure 3D) as FIV IN bound more robustly than

HIV-1 IN to NUP153C in our hands (Figure S4). Thus, while

NUP153 may bind more than one HIV-1 determinant, our results

are consistent with a direct interaction between NUP153C and

viral CAN underlying the requirement for NUP153 during HIV-1

infection.

Potentially degenerate binding of NUP153 FG motifs
Different FG motifs within Trim-NUP153C mediated restriction

of EIAV versus HIV-1 infection (Figure 5). Contrastingly,

correspondence to protein binding in vitro was less strict:

NUP153CD896–1045 effectively bound EIAV CAN, though this

deletion variant could not inhibit EIAV as a Trim-fusion. The

1415-FTFG-1418 tetra-alanine mutant, which lost the ability to

inhibit HIV-1 as a Trim-fusion, was little if at all reduced for pull-

down by HIV-1 CAN, though alteration of all seven FG motifs in

the last quarter of NUP153C yielded a protein greatly deficient for

binding to HIV-1 CAN (Figure 6). Because the tetra-alanine

1415-FTFG-1418 NUP153C mutant protein was significantly

defective for binding assembled CA-NC tubes, we infer that this

specific FG motif is particularly important for NUP153C binding

to multimerized CA.

We believe our results reflect the nature of the NUP153C-CA

interaction during HIV-1 infection. Unlike a bimolecular interac-

tion between two well-folded domains, each with a single binding

site, NUP153C exhibits no appreciable secondary structure and is

highly repetitive in its primary sequence, particularly for

phenylalanine-based FG motifs. As FG sequences appear to

dictate NUP153C binding to CAN, each of the 29 motifs may

possess some affinity for CAN. Residues adjacent to the

Figure 11. Association between NUP153 dependency and cell cycle independence. (A) Propidium iodide staining of HOS cells untreated
(grey) or treated for 24 h with 5 mM Etoposide phosphate (red line). (B) Infectivity of CA mutant viruses in HOS cells arrested with 5 mM Etoposide
phosphate, normalized to infectivity in control HOS cells. Error bars denote standard error of 4 experiments. (C) Scatter plot comparison of CA mutant
sensitivities in cell cycle arrested HOS cells in the absence or presence of 5 mM cyclosporine (CsA). Mutant viruses most sensitive to cell cycle arrest are
indicated. (D to G) Scatter plots comparing sensitivities of mutant viruses to cell cycle arrest versus NUP153 knockdown (D), or restriction by Trim-
NUP153C (E), CPSF6358 (F), or Trim-CPSF6358 (G). Spearman rank correlation coefficients and measures of significance are indicated. Data points for CA
mutant viruses P38A, T54A, A92E, and G94D clustered with the WT virus within these panels, so their labels were omitted to aid legibility.
doi:10.1371/journal.ppat.1003693.g011
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phenylalanine, such as glycine, may allow proper flexibility to fit

into the helix 3/4 pocket for Asn57 engagement. We envision that

residues peripheral to the motif may also contribute intra- and

inter-molecular interactions. This interpretation is consistent with

the mode of CPSF6 binding: the CPSF6 FG dipeptide (residues

Phe321 and Gly322) is critical for CPSF6358 mediated restriction

[51], while upstream residues Val314 and Leu315 fulfill important

secondary roles through engaging additional hydrophobic patches

located between CAN helices 4 and 5. CPSF6 backbone functional

groups also interact to varying degrees with the side-chains of CA

residues Asn74, Thr107, Lys70, and Gln67 [41] (Figure 8C).

Given this model, we hypothesize that differential accessibility

of the CAN helix 3/4 pocket might factor into the contrasting

binding specificities observed between monomeric and oligomer-

ized CA: while the pocket is likely exposed as a soluble NTD

fragment in the pull-down assay, it may be less available within the

context of a multimeric CA array. The CTD of the adjacent CA

subunit covers the bottom edge of the cavity (Figure S5A), and

the interacting NUP153C peptide would need to reach into the

crevice between CA subunits, past the cyclophilin-binding loop,

and under helix 5 to reach the pocket (Figure S5B). These steric

requirements likely limit the number of NUP153C FG motifs

capable of forming energetically favorable interactions with the

oligomerized CA array present on the viral core.

Association with core uncoating and sensitivity to cell
cycle arrest

Accordingly, alterations in the rate or extent of CA core

uncoating may alter engagement of NUP153 during infection.

Though both Trim-NUP153C and Trim-CPSF6358 presumably

encounter CA cores shortly after entry (Figure S1) [51], Trim-

CPSF6358 restricted the hyperstable CA mutant viruses E45A and

Q63A/Q67A [13,38,53,54,68] as efficiently as WT cores, while

Trim-NUP153C was less effective at restricting either of these

mutants (Figure 8F). Both mutant CAN proteins in large part

retained NUP153C binding in vitro (Figure 7B), suggesting that

some CA disassembly may be needed for interaction with

NUP153C within cells.

These hyperstable CA mutant viruses acutely depend on the

cycling state of the cell. Comparison between cell cycle depen-

dence and NUP153 reliance resulted in a strong negative

correlation within the panel of CA mutant viruses (Figure 11D).

This correlation was stronger than the relationship between

CPSF6358 sensitivity and cell cycle dependence (Figure 11F),

suggesting a more direct association with NUP153 engagement.

Consistent with this, the CPSF6 binding mutant N74D was cell

cycle independent, while N57A and N57D mutant viruses, both of

which are also defective for NUP153 binding, were sensitive.

While the direct cause of cell cycle dependence is not clear, we

suspect that defective NUP153 binding is a key contributor, and

that hyper-stable CA cores may phenotypically mimic this effect.

Competitors of NUP153-CA binding
The HIV-1 CA side-chains involved in NUP153C binding

overlap those identified to interact with CPSF6. Accordingly, we

found recombinant NUP153C able to compete with CPSF6 for

binding to HIV-1 CAN in vitro (Figure 8D). The overlapping

binding sites suggest these proteins may take interdependent or

even antagonistic roles during infection. While the role of

endogenous CPSF6 protein in HIV-1 infection is unknown, the

cytoplasmic CPSF6358 truncation variant potently restricts HIV-1

[18,41,51,60,69]. Like Trim-NUP153C, CPSF6358 may interact

with the viral core shortly after entry; both a Trim-fusion protein

containing the CPSF6 binding domain [51], and the cytoplasmi-

cally expressed CPSF6375 isoform [70], prevent the completion of

reverse transcription. Interestingly, CPSF6358 does not inhibit

reverse transcription, but instead blocks HIV-1 nuclear import.

Additionally, CPSF6358 appears to inhibit only a subset of CA

mutant cores that it is able to bind [60] (Figure 8F and S3). This

may reflect an incomplete understanding of the mechanism of

CPSF6358 restriction, which could involve antagonism of the CA-

NUP153 interaction (Figure 8G). While CPSF6358-mediated

stabilization of the CA core [60,69] may contribute to the nuclear

import defect, it seems possible that direct competition for

NUP153 binding may also be at play.

Small molecules that bind the helix 3/4 pocket in CA may also

preclude NUP153 binding during HIV-1 infection. At least part of

the PF74 antiviral mechanism occurs before nuclear entry, as it

can inhibit HIV-1 reverse transcription [61]. Yet, its altered dose-

response curve in NUP153 depleted cells suggests that it

antagonizes CA engagement of NUP153 as well (Figure 9).

Notably, recently identified pyrrolopyrazolone small molecules BI-

1 and BI-2 bind the same pocket, yet inhibit HIV-1 nuclear import

[71]. As both PF74 and the pyrrolopyrazolone compounds bind

CAN with similar affinity [41,71], we speculate that the contrasting

phenotypes observed with these small molecules is due to their

similar abilities to directly compete with host factors that bind the

helix 3/4 pocket juxtaposed with their differential affects on CA

core stability: PF74 destabilizes incoming capsids [61], whereas BI-

1 and BI-2 can stabilize capsid structures in vitro [71]. TNPO3

depletion is proposed to mis-localize endogenous CPSF6 into the

cytoplasm, recreating the phenotypes conferred by CPSF6358

expression [60]. Resembling our observations with NUP153

knockdown cells, infection of TNPO3 depleted cells exhibited a

similar profile of reduced sensitivity to PF74 [72].

Shared dependency profiles between host-factor binding
mutants

A number of HIV-1 CA mutant viruses beyond the above noted

hyperstable mutants exhibited resistance to NUP153 knockdown

while maintaining near WT levels of protein binding. Many of

these are defective for binding to other HIV-1 CA interacting host

factors [40,41]. Interestingly, the N74D mutant is defective for

CPSF6358 binding [18,41] but is competent to bind both NUP153

(Figure 7B) and NUP358 [40], yet requires neither of these

nucleoporins for infection. Similarly, CA mutant virus N57A is

NUP153 and CPSF6 binding-defective, detectably binds the

NUP358 CHD, yet does not require NUP358 expression for

infection [40]. The CypA and NUP358 CHD binding mutants

G89V and P90A are also comparably less sensitive to NUP153

depletion and CPSF6358 restriction [19,40,60]. Though the

mechanistic reasons for these relationships are unclear, loss of

binding to one of these factors appears to render HIV-1

independent of the others.

Model of NUP153 FG engagement during lentiviral
infection

Current data and the known biology of this protein suggest

NUP153 is likely important for trafficking the HIV-1 PIC through

the nuclear pore and into the nucleus [16,19,73] (Figure 12). The

viral nucleoprotein complex is likely to initially dock to the NPC

by engaging NUP358 [73] through its CHD [40], though

additional determinants of NUP358 engagement [74], such as

FG motifs, may also participate. While intact HIV-1 cores are too

large to enter the central channel, CA cores in various stages of

disassembly may enter far enough for remaining CA to be

accessed by the FG domains present in NUP153C. Bypassing
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NUP153 affects downstream steps of infection, including integra-

tion, likely by altering the chromosomal environment encountered

by the PIC; NUP153 depletion or the N57A CA mutation shifts

integration events away from gene-dense regions of chromatin

[40,66,75], similar to the effects observed from NUP358 or

TNPO3 knockdown, or the N74D CA mutation [40,76].

CA binding with NUP153C may serve two distinct roles during

infection. Firstly, NUP153 may be responsible for physically

translocating the PIC by engaging CA molecules that may

associate with it. The relatively short half-life of NUP153 at the

NPC may contribute to the release of the PIC into the

nucleoplasm [20]. Secondly, as even a partially disassembled core

could remain too large to efficiently pass through the NPC

channel, CA interaction with NUP153 may be required to fully

uncoat the viral core at the NPC and prime the PIC for nuclear

import. Indeed, CA cores have been shown to dock to NPCs for

several hours before PIC nuclear translocation [43]. CA oligomers

may interact with a limited subset of NUP153C FG motifs, while

increased CA pocket accessibility from progressive core disassem-

bly may expose monomeric CA to an expanded number of

NUP153C FG repeats. While CA mutant viruses such as N74D

may uncoat differently and circumvent this mechanism without

penalty in various transformed cell lines, they apparently incur

steep costs to infectivity in other cell types, such as primary

macrophages [40,77].

Convergence in NUP153 use amongst viral families
Divergent viruses have adapted to use NUP153 for their own

devices. Our results suggest EIAV, which presents different amino

acid residues flanking the CAN hydrophobic pocket, may have

either retained, or convergently evolved NUP153 binding.

Hepatitis B virus (HBV) has also been reported to bind NUP153

during its nuclear transport; though the HBV core is sufficiently

small to traverse the NPC channel, NUP153 binding is believed to

be important for HBV core conformational change and genome

release within the nuclear basket [78]. This interaction may also

require binding to NUP153 FG motifs, as both of the broadly

defined regions mapped for HBV capsid binding overlapped parts

of NUP153C. The S. pombe homolog of NUP153, Nup124p, is

important for Tf1 retrotransposition and binds the Tf1 Gag

protein, though binding did not necessarily appear to map to

Nup124p FG motifs [79,80]. Perhaps akin to effects caused by

differential HIV-1 uncoating, the requirement for Nup124p

appears to be related to the state of Tf1 Gag multimerization [81].

It remains to be determined whether FG motifs found on

additional nucleoporins may bind HIV-1 and aid its infection.

While the effects of NUP98 depletion on HIV-1 infection are

relatively modest [18,66,82], this protein can also co-sediment

with HIV-1 CA-NC tubes in vitro [66]. Similarly, the GLFG-motif

enriched domain of S. cerevisiae NUP100, predicted to be

orthologous to vertebrate NUP98, binds Ty3 Gag protein [83].

Alternatively, while CA binding with the CHD is proposed to

determine the requirement for NUP358 [40], it remains to be seen

whether its own FG domains may bind CA and contribute to its

function during infection. While numerous FG nucleoporins exist,

it is likely that certain characteristics specific to NUP153, including

its length, flexibility, and its relatively high dissociation rate from

the NPC, along with its spatial location around the nuclear rim of

the NPC, makes this protein particularly important for lentiviral

passage through the nuclear pore.

Materials and Methods

Plasmid constructs
Infection assays utilized single-round viruses carrying either

GFP or luciferase reporter genes. GFP-based constructs included

HIV-1, EIAV, BIV, RSV, FIV, MLV, HIV-2 strain ROD, simian

immunodeficiency viruses from Macaca mulatta clone 239 (SIV-

mac), Chlorocebus sabaeus (SIVagmSab), and Chlorocebus tantalus

(SIVagmTan), all described previously [19,84]. HIV-1 CA

mutations were generated through site-directed mutagenesis of

the HIV-1NL4-3-based pHP-dI-N/A packaging plasmid [85]

(AIDS Research and Reference Reagent Program [ARRRP]),

which were co-transfected with either pHI-vec2.GFP or pHI-Luc

transfer vectors [19].

Human NUP153 (accession number NM_005124.3), or dele-

tion mutants thereof, fused to N-terminal HA tags were expressed

from the pIRES-dsRed Express HA-NUP153 expression vector

[19]. Trim-fusion constructs, which were built within pLPCX-

rhTrim5a-HA [46], were created by engineering a BamHI site at

nucleotides corresponding to residues 301 and 302 of rhesus

Trim5a, and ligating the digested vector with sequences encoding

HA-NUP153C, NUP153C-HA, or CPSF6358-HA [18]. Truncated

Trim-HA was engineered by modifying the Trim-HA-NUP153C

vector to encode two stop codons at the nucleotides corresponding

to the first two residues of NUP153C. All deletion and missense

mutations within animal-cell expressed NUP153C were engineered

Figure 12. The NUP153-CA interaction during HIV-1 infection.
Partially uncoated HIV-1 cores dock at the NPC through engaging
NUP358 (light green). Once docked, NUP153 (dark green) FG motifs
bind CA through phenylalanine insertion into the hydrophobic pocket
of the NTD, forming hydrogen bonds with CA residue Asn57, as well as
adjacent polar side-chains (enlarged to the right). CA engagement with
NUP153 is required for HIV-1 nuclear import, either directly during PIC
translocation, or for completion of a prerequisite uncoating step.
Perturbation of NUP153 engagement may affect multiple steps, such as
intranuclear trafficking and integration site selection. Cytoplasmic
CPSF6 may inhibit HIV-1 nuclear import by antagonizing NUP153
binding to CA.
doi:10.1371/journal.ppat.1003693.g012
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by site-directed-mutagenesis of plasmids pLPCX-Trim-HA-

NUP153C or pLPCX-HA-NUP153C.

HIV-1NL4-3 CA carrying C-terminal his and FLAG tags was

expressed from the pET11a-HIV1-CA-his-flag bacterial expres-

sion vector. The vector encoding tagged HIV-1 CA NTD

(pET11a-HIV1-CAN-his-flag) was constructed by removing nu-

cleotides corresponding to CA residues 147–231 from the full-

length expression vector. Bacterial expression vectors for FIV CA

were generated by amplifying DNA encoding full-length FIV CA

(residues 1–223; pET11a-FIV-CA-his) or NTD only (residues 1–

140; pET11a-FIV-CAN-his) from pFP93 [86] with a primer

encoding a C-terminal his-tag, and ligating with digested pET11a

DNA. pET22b-based bacterial expression vectors encoding C-

terminally his-tagged N-tropic MLV (pET22b-NMLV-CA-his)

and EIAV (pET22b-EIAV-CA-his) were obtained from the

laboratory of Dr. Joseph Sodroski, and CA NTDs were engineered

from full-length his-tagged constructs by removing nucleotides

corresponding to residues 133–263 of N-MLV, and residues 149–

231 of EIAV, by site-directed mutagenesis.

The construct pGEX2T-GST-NUP153C, which encoded GST

fused to NUP153C, was created by deleting sequences that

encoded residues 1–895 from the full-length human protein

pGEX2T-hNUP153 bacterial expression vector [87]. Plasmid

pGEX2T-his-GST-pp-NUP153C, which was utilized to obtain

tag-free NUP153C protein, was derived from pGEX2T-GST-

NUP153C by sequentially engineering a PreScission protease site

between GST and NUP153C, and then appending a his-tag N-

terminal to GST. A stop codon was introduced at the nucleotides

corresponding to residue 1350 to generate the D1350–1475

truncation mutant. The 76FG/A mutant NUP153C was engi-

neered for bacterial expression by swapping the WT sequence

present in pGEX2T-his-GST-pp-NUP153C with a fragment

encoding NUP153 residues 1178–1475 amplified from pLPCX-

HA-NUP153C-76FG/A. All coding sequences were verified

through DNA sequencing.

Cells
293T and HOS cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) (Invitrogen) supplemented with 10%

fetal bovine serum (FBS), 100 U/ml penicillin, and 0.1 mg/ml

streptomycin. HOS cells stably transduced with MLV-derived

LPCX transfer vectors were subsequently selected and maintained

with 2 mg/ml puromycin. Approximately 25,000 HOS cells

seeded per well of a 24-well plate were transfected the next day

with a final concentration of 40 nM siNUP153#1 (GGACTTGT-

TAGATCTAGTT) or a mismatch control of siNUP153#1,

referred to as siControl (GGTCTTATTGGAGCTAATT) (Dhar-

macon) [19], using RNAiMax (Invitrogen) according to the

manufacturer’s instructions. Dividing or cell cycle arrested cells

were collected at the time of infection, fixed in 70% ethanol, and

incubated for 30 min at room temperature in staining solution

[0.1% Triton X-100, 0.2 mg/ml RNAse A (Invitrogen), and

20 mg/ml propidium iodide in phosphate-buffered saline (PBS)].

The cells were washed, and cellular DNA content was assessed

with a FACSCanto flow cytometer (Becton, Dickenson and

Company) equipped with FACSDIVA software.

Virus production
Viral vector particles were produced by transfecting 293T cells

in 10-cm plates with 10 mg total of various ratios of the

aforementioned virus production plasmids using CaPO4. The

cells were washed 16 h after transfection, and supernatants

collected from 24 to 72 h thereafter were clarified at 3006 g,

filtered through 0.45 mm filters (Nalgene), and either allotted and

frozen or concentrated by ultracentrifugation using an SW32Ti

rotor at 50,0006g for 2 h at 4uC before freezing. Concentrations

of HIV-1 and EIAV CA mutant viral stocks were determined

alongside concomitantly produced WT viruses using an exogenous
32P-based assay for RT activity [88].

Infectivity assays
HOS cells (10,000 or 2,500) seeded onto 48-well or 96-well

plates, respectively, were infected with various reporter viruses.

Percentages of GFP-positive cells were determined 48 h post-

infection (hpi) using a FACSCanto flow cytometer equipped with

FACSDIVA software. GFP reporter experiments comparing

retroviral genera were performed with virus inoculates adjusted

to yield ,40% GFP-positive cells in control samples. HIV-1 or

EIAV CA mutant viruses (26105 RTcpm) were used to infect 96-

well and 48-well plates of cells, respectively. HIV to EIAV

infectivity ratios were calculated after initially normalizing to the

average of MLV and FIV negative control viruses to account for

slight differences in overall infectivities between stable cell lines.

Cyclosporine (5 mM, Sigma) was introduced to cells at the time of

infection. Cell cycle arrest experiments were performed by plating

2,500 control or 5,000 experimental cells treated with 5 mM

Etoposide-phosphate (Calbiochem) the day before infection.

Quantitative PCR for the accumulation of viral late reverse

transcripts and 2-long terminal repeat (LTR)-containing circles

were performed as previously described [19]. The quantitation of

early reverse transcripts was performed using primers AE989 and

AE990 and Taqman probe AE995 [89].

Western blot analysis
Cells stably expressing Trim-fusion proteins were lysed in Buffer

A [25 mM Tris-HCl pH 7.5, 200 mM NaCl, 1 mM DTT, 1 mM

EDTA, Complete protease inhibitor (Roche)] and sonicated for

30 s total with a misonix sonicator. Protein concentration of the

bulk lysate was determined by Bradford assay (Bio-rad), and 75 mg

of each sample were electrophoresed through Tris-glycine

polyacrylamide gels, and transferred onto polyvinylidene fluoride

membranes. Transiently expressed HA-tagged proteins were

either extracted with buffer H [10 mM Tris-HCl pH 8.0,

10 mM KCl, 1.5 mM MgCl2] followed by repeated freeze-thaws,

or Triton buffer [50 mM Triethanolamine, 250 mM NaCl, 0.5%

Triton X-100], and pelleted in a microcentrifuge for 20 min at

21,0006g at 4uC. Stably expressing cells were also fractionated by

initial lysis in Buffer F1 [20 mM Tris-HCl pH 7.5, 10 mM NaCl,

1.5 mM MgCl2, 0.25% Triton X-100, and Complete Protease

Inhibitor], followed by centrifugation at 6,0006 g. The superna-

tant was removed as Fraction 1, and the process was repeated,

with the resulting supernatant combined with the previous

fraction. The subsequent pellet was resuspended in Buffer F2

[Buffer F1 lacking Triton X-100, but with 0.5% sodium

deoxycholate and 1% Tween-40], and pelleted at 21,0006 g for

15 min. The supernatant was removed as Fraction 2, and pellet

was resuspended in 16 Turbo DNase buffer and treated with

40 U/ml Turbo DNase (Ambion) for 10 min at 37u C. Two parts

fraction 1, one part fraction 2, and one part of the remaining

fraction (Fraction 3) were each mixed with sample loading buffer

and separated on Tris-glycine polyacrylamide gels. Exogenously

expressed HA-tagged proteins were detected using a 1:4,000

dilution of HRP-conjugated 3F10 antibody (Roche) or 1:4,000

dilution of mouse 16b12 antibody (Covance) and developed with

ECL prime (GE Healthcare) or Femto (Thermo Scientific)

detection reagents. NUP153, NUP62, and NUP358 were detected

with a 1:4,000 dilution of mouse monoclonal antibody mab414

(Abcam). HRP-conjugated mouse anti-b-actin antibody or mouse
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anti-a-tubulin antibody (Abcam) were used at 1:10,000 dilutions to

confirm equal lysate loading across samples. His-tagged HIV-1 CA

was detected with 1:15,000 a-his HRP (Clontech). CA-NC protein

was detected with 1:5,000 mouse anti-p24 antibody ab9071

(Abcam). Histone H3 was detected with 1:2,000 rabbit histone H3

antibody #9715 (Cell Signaling Technology). All mouse and

rabbit primary antibodies were detected using 1:10,000 dilutions

of anti-mouse or anti-rabbit HRP secondary antibodies (Dako).

Immunofluorescence confocal microscopy
Cells transduced with empty LPCX vector or stably expressing

HA-epitope tagged rhTrim5a, NUP153C, or fusion proteins

thereof, were cultured on eight-well chamber slides. After 24 h,

the cells were fixed with 4% paraformaldehyde for 10 min, washed,

and permeabilized with PBS containing 0.5% Triton X-100. The

permeabilized cells were blocked with PBS containing 10% FBS for

1 h, and stained with a 1:100 dilution of anti-HA antibody 16b12.

After a 30 min wash with PBS, the cells were incubated for 1 h with

a 1:1,000 dilution of an Alexa Fluor 555 conjugated goat anti-mouse

IgG antibody (Invitrogen), as well as Hoechst 33342 (Invitrogen)

diluted to a concentration of 0.2 mg/ml. After an additional 30 min

wash with PBS, the samples were covered with mounting medium

[150 mM NaCl, 25 mM Tris pH 8.0, 0.5% N-propyl gallate, and

90% glycerol]. The processed samples were analyzed on a Nikon

Eclipse spinning disk confocal microscope.

NUP153 protein purification
GST-NUP153C was expressed in BL21-CodonPlus (DE3)-RILP

E. coli (Agilent) grown in 26YT media and induced at an optical

density of 0.8 at 600 nm (OD600) with 1 mM isopropyl b-D-1-

thiogalactopyranoside (IPTG) for 1 h at 18uC. Cells were pelleted

at 6,0006 g, and sonicated for 5 min in buffer A. The lysate was

centrifuged for 30 min at 35,0006 g, and the pellet was

resuspended in buffer B [1 M NaCl, 25 mM Tris-HCl pH 7.5,

1 mM DTT, 1 mM EDTA, Complete protease inhibitor] with a

dounce homogenizer. The lysate was again spun at 35,0006 g,

and the pellet was resuspended in Buffer C [2 M Urea, 200 mM

NaCl, 25 mM Tris-HCl pH 7.5, 1 mM DTT, 1 mM EDTA,

Complete protease inhibitor] with a dounce homogenizer. After a

last centrifugation at 35,0006g, the supernatant was collected and

incubated with glutathione-sepharose beads (GE Healthcare)

overnight at 4uC. The beads were washed with buffer D

[200 mM NaCl, 25 mM Tris-HCl pH 8.0, 1 mM DTT, 1 mM

EDTA, Complete protease inhibitor], and the protein was eluted

with buffer D containing 20 mM glutathione. Eluted protein was

dialyzed against buffer D to remove excess glutathione, spin

concentrated by ultrafiltration through a 10,000 nominal molec-

ular weight limit (NMWL) Amicon filter (Millipore), and flash

frozen in liquid nitrogen for storage at 280uC.

BL21-CodonPlus (DE3)-RILP E. coli transformed with pGEX2T-

his-GST-pp-NUP153C was grown to an OD600 of 0.8, followed by

induction with 1 mM IPTG for 1 h at 18uC. Cells were pelleted at

6,0006g, and sonicated for 5 min in buffer A. The lysate was then

centrifuged for 30 min at 35,0006g, and the pellet was resuspended

in buffer E [6 M Urea, 200 mM NaCl, 25 mM Tris-HCl pH 7.5,

1 mM DTT, 1 mM EDTA, Complete protease inhibitor] with a

dounce homogenizer. The lysate was then centrifuged at 40,0006g

for 1 h, and the resulting supernatant was incubated with Ni-NTA

conjugated agarose beads (Qiagen) overnight. The beads were then

initially washed with buffer E, and then progressive dilutions of

buffer E into cleavage buffer [150 mM NaCl, 50 mM Tris-HCl

pH 7, 1 mM DTT, 1 mM EDTA] (3:1, 1:1, 1:3), with a final wash

in cleavage buffer only, each supplemented with 7.5 mM imidazole.

The beads were incubated with 5 U of PreScission protease (GE

Healthcare) for 48 h. The supernatant, which was cleared with 0.1

volumes of Ni-NTA beads and glutathione-sepharose beads each at

4uC to remove uncleaved protein and residual PreScission protease,

was centrifuged at 21,0006 g for 15 min at 4uC. The resulting

supernatants were quantitated following fractionation by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and

staining with SYPRO Ruby (Invitrogen) or Coomassie blue, as

compared to a standard curve of bovine serum albumin (BSA), using

ChemiDoc MP imager (Bio-Rad) with Image Lab software. Cleaved

full length NUP153C was recovered at ,50% purity, with the

predominant contaminants degradation products of the full-length

protein, as inferred through comparison with western blots using

mab414 antibody.

CA binding assays
Recombinant HIV-1 CA-NC was expressed in E. coli, purified,

and assembled into CA-NC complexes as previously described

[29]. Expression constructs encoding full-length HA-NUP153 or

fragments thereof were transiently transfected into 293T cells

using X-tremeGENE 9 DNA transfection reagent (Roche). Cells

were collected after 48 h, lysed with successive freeze thaws in

buffer H, and clarified by centrifugation at 21,0006g at 4uC. CA-

NC complexes were incubated with clarified lysates for 1 h at

room temperature before ultracentrifugation for 30 min at

100,0006 g through a 50% sucrose cushion prepared in PBS.

The resulting pellet was resuspended in 16 sample loading buffer,

and fractionated by SDS-PAGE. Experiments with purified

proteins were stained with Coomassie blue or SYPRO Ruby,

while experiments using a lysate component were developed by

western blot. Quantification was performed with a ChemiDoc MP

imager using Image Lab software.

His-tagged HIV-1, MLV, EIAV, and FIV capsid proteins,

either full length or NTD only, were expressed in BL21-

CodonPlus (DE3)-RILP E. coli, grown to an OD600 of 0.6, and

induced for 4 h with 1 mM IPTG. Bacteria pelleted by

centrifugation were resuspended in Buffer A, sonicated, and

centrifuged at 30,0006 g for 30 min. The supernatants were

incubated overnight with Ni-NTA-sepharose beads, eluted with

20 mM Tris-HCl pH 8.0, 200 mM imidazole elution buffer, and

dialyzed into Tris Buffer (20 mM Tris-HCl pH 8.0). Dialyzed

protein was concentrated by ultrafiltration through a 10,000

NMWL filter, centrifuged at 21,0006 g, and the resulting soluble

protein was quantitated by spectrophotometer.

Pull-down assays with full-length CA or CAN proteins were

performed by mixing 20 ml reactions with the following final

concentrations: 0.02 ml packed volume Ni-NTA beads per ml

(0.4 ml total), 20 mM CA, 25 mM Tris-HCl pH 8.0, and either

0.5 mM purified NUP153C with 0.1% NP-40 and 150 mM NaCl,

or 100 mg 293T lysate overexpressing HA-tagged NUP153 with

0.25% Triton X-100 and 200 mM NaCl. Mixtures were left

rocking at room temperature for 1 h after which the samples were

washed twice in buffer M [25 mM Tris-HCl pH 8.0, 150 mM

NaCl, and 0.1% NP-40], allowing the beads to settle by gravity,

and finally resuspended in 16 sample loading buffer. Saturation

curves were achieved by mixing 3 ml packed volume Ni-NTA

beads with 0.5 mM purified WT or mutant NUP153C, 150 mM

NaCl, 25 mM Tris-HCl pH 8.0, and 0.1% NP-40, with half-log

increments of HIV-1 CAN from 2 mM to 200 mM. Both bead-

bound and supernatant fractions were separated by SDS-PAGE

and stained with SYPRO Ruby, with the percent of NUP153C

protein bound calculated at each concentration. The Kd of

NUP153C binding was calculated by subtracting nonspecific

binding to beads and fitting the resulting data-points with a one-
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site saturation binding nonlinear regression using Prism6 software

(GraphPad).

CPSF6 competition experiments were performed through mod-

ification of the CA-NC protocol. Assembled CA-NC was diluted to a

final concentration of 0.8 mM in the reaction mixture. WT or

mutant NUP153C was added to a final concentration of 4 mM, along

with 10 mg total 293T extract expressing C-terminally HA-tagged

CPSF6, resulting in final concentrations of 170 mM NaCl, 75 mM

Tris-HCl pH 8.0, and 0.025% Triton X-100. Mixtures (20 ml) were

incubated at room temperature for 20 min, after which they were

spun over a 30 ml 20% sucrose cushion in a microcentrifuge at

21,0006g for 20 min at 4uC. The resulting pellet was resuspended

in sample loading buffer and separated by SDS-PAGE. Western

blotting with p24 antibody indicated ,35% of input CA-NC was

recovered in the pellet. CA-NC co-sedimentation assays with WT or

FG mutant NUP153C were performed similarly, but were instead

centrifuged over a 25% sucrose cushion.

IN pull-down assay
His-tagged HIV-1 and FIV IN [84] and GST [90] were

expressed and purified as previously described. Pull-down of

soluble IN was performed as previously described for GST-

LEDGF326–530 [59], with 0.8 mM of his-tagged HIV-1 or FIV IN

incubated with 0.47 mM GST-NUP153C or control GST pre-

bound to glutathione-sepharose beads in PD buffer [150 mM

NaCl, 25 mM Tris-HCl pH 7.4, 5 mM MgCl2, 5 mM DTT,

0.1% NP-40]. BSA (5 mg) was included as an additional specificity

control. The reaction was incubated for 2 h at 4uC, after which

the beads were washed 4 times with PD buffer, and settled each

time for 20 min in the absence of centrifugation. Recovered

samples were resolved by SDS-PAGE, and stained with Coomas-

sie blue and western blotted with anti-his antibody.

Statistical analysis
Dependencies between variables were assessed by Spearman

rank correlation using Prism6 software. The significances of pair-

wise differences were calculated by Student’s t-test (two-tailed)

using Prism6 software.

Supporting Information

Figure S1 Trim-NUP153C localizes to the cell cytoplasm
and restricts HIV-1 reverse transcription. (A) Immunofluo-

rescence confocal microscopy of HOS cells transduced with empty

vector or the indicated HA-tagged construct. Hoescht 33342 stains DNA

and therefore highlights cell nuclei. (B) Fractionation of rhTrim5a-HA,

Trim-HA-NUP153C, and HA-NUP153C expressing cells. Gels were

probed with antibodies against the HA tag (top panels), histone H3, a-

tubulin, or NUP62 (bottom panels). Cytoplasmic a-tubulin and nucleus-

associated NUP62 and histone H3 marker proteins were predominantly

found in fractions 1 and 3, respectively. Asterisks mark bands that

correspond to the expected mobilities of full-length constructs. (C–E)

Levels of R-U5 DNA synthesis (early reverse transcripts) (C), U5-gag

DNA synthesis (late reverse transcripts) (D), and 2-LTR circle formation

(E) in cells transduced with empty vector, rhTrim5a-HA, or Trim-HA-

NUP153C expression constructs at 1, 6, 24, and 48 h post HIV-1

infection, as detected by quantitative PCR. Results (averages of three

experiments, with error bars denoting standard error) were

normalized to levels of peak DNA amplification, which was set at

100%. (F) Corresponding infectivity of GFP reporter viruses,

measured 48 h post infection. Data were normalized to infectivity in

cells transduced with empty expression vector. Results are an average

of three experiments, with error bars denoting standard error.

(TIF)

Figure S2 Pull-down of HA-NUP153C by HIV-1 CAN

proteins. HA-NUP153C in 293T cell lysates pulled-down by WT

or various mutant his-tagged HIV-1 CAN proteins, with recovered

protein resolved by SDS-PAGE and detected by 3F10 and anti-his

antibodies. Results are an average of 4 experiments, with error

bars denoting standard error. A representative western blot result

is shown. The dotted line highlights the level of HA-NUP153C

binding to WT CAN protein.

(TIF)

Figure S3 HIV-1 CA mutant sensitivity to CPSF6358

expression. Percent infectivity of CA mutant viruses on

CPSF6358 expressing HOS cells compared to mock transduced

cells. Results are the average of 3 experiments, with error bars

denoting standard error.

(TIF)

Figure S4 GST-NUP153C pull-down of HIV-1 and FIV
IN. GST-NUP153C pulled-down an average of ,0.85% of input

his-tagged HIV-1 IN and ,5.55% of input his-tagged FIV IN over

3 experiments. A representative experiment is shown. Note

preferential western blot detection of the FIV IN N-terminal his-

tag over that of the HIV-1 tag.

(TIF)

Figure S5 Location of NUP153C binding site within
multimerized CA. (A) Model of the HIV-1 CA hexamer (pdb:

3j34) [32], with surface representations of two adjacent CA units

shown. Side chains involved in NUP153C binding are shown as

sticks and labeled, with the binding pocket highlighted by a dashed

white circle. (B) Model of the HIV-1 inter-hexameric CA interface

(pdb: 3j34). The two molecules in panel A were rotated 90u around

the y-axis, 210u around the x-axis, and juxtaposed with two CA

molecules from the adjacent hexamer. The z-plane was clipped to

expose the NUP153C binding site within the interface.

(TIF)
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