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Every possible nucleotide change that is compatible with life 
is likely present in the germline of a living human1. Some of 
these variants alter protein activity or abundance, and, conse-

quently, may impact disease risk. However, only ~2% of all presently 
reported germline missense variants have clinical interpretations2,3. 
Most of the remaining variants, as well as nearly all missense vari-
ants not yet observed, are rare and cannot be interpreted using 
traditional genetic approaches. Computational approaches are 
insufficiently accurate, and somatic alterations further complicate 
the picture. These limitations create a major challenge for the clini-
cal use of genomic information.

Deep mutational scans, which enable the simultaneous func-
tional characterization of thousands of missense variants of a 
protein, offer one potential solution to the variant interpreta-
tion problem4–6. For example, the effects of nearly all possible 
single-amino-acid variants of the RING domain of BRCA1 on its 
E3 ligase and BARD1-binding activity were quantified in a single 
study7. In another example, the effects of all possible single-amino-
acid variants of PPARγ  on the expression of CD36 in response to  
different agonists were measured8. In both cases, the functional data 
enabled accurate identification of most known pathogenic variants, 
suggesting that these data could be useful in interpreting newly 
observed variants.

So far, deep mutational scans, including of BRCA1 and PPARγ , 
have relied on assays specific for each protein’s molecular function. 
However, developing specific assays for each of the thousands of 
disease-related proteins is impractical. To overcome this challenge, 
we sought to devise a functional assay that was both informative 
of variant effect and generalizable to many proteins. We based our 
assay on the fact that most proteins, despite their diversity, must be 

abundant enough to perform their molecular function. Variants can 
interfere with steady-state protein abundance in cells via a variety 
of mechanisms, including by diminishing thermodynamic stability, 
altering post-transcriptional regulation or interrupting trafficking. 
In fact, as much as 75% of the pathogenic variation in monogenic 
disease is thought to disrupt thermodynamic stability and, conse-
quently, alter abundance9,10. Furthermore, low-abundance variants 
of tumor suppressors can lead to cancer11,12, while low-abundance 
variants of drug-metabolizing enzymes can alter drug response13.

Here, we describe VAMP-seq, which measures the steady-state 
abundance of protein variants in cultured human cells. We applied 
VAMP-seq to assess 4,112 single-amino-acid variants of the tumor 
suppressor PTEN and 3,689 variants of the enzyme TPMT. Our 
results show how changes in protein biophysical properties and 
interactions within and between proteins alter protein abundance in 
cells. We identify 1,138 previously uncharacterized, low-abundance 
single-amino-acid variants of PTEN that are likely to be pathogenic, 
and 777 TPMT variants that are likely unable to adequately meth-
ylate and thereby inactivate thiopurine drugs. We observe selec-
tion for low-abundance PTEN variants in cancer and show that 
LRG_311p1:p.Pro38Ser, which accounts for ~10% of PTEN mis-
sense variants observed in melanoma, functions via a dominant-
negative mechanism. Finally, we demonstrate that VAMP-seq can be 
applied to other clinically important proteins including VKORC1, 
CYP2C9, CYP2C19, MLH1 and PMS2.

Results
Multiplex assessment of PTEN and TPMT variant abundance. 
Inspired by earlier methods to assess the stability of protein vari-
ants in yeast14 and bacteria15, and by a microarray-based assay 
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that  globally profiled mammalian protein stability16, we developed 
VAMP-seq. VAMP-seq is a multiplex assay that uses fluorescent 
reporters to measure the steady-state abundance of protein variants 
in cultured human cells (Fig. 1). Each cell expresses a single variant 
directly fused to EGFP. The stability of the variant dictates the abun-
dance of the EGFP fusion and, accordingly, the green fluorescence 
signal of the cell. To control for expression, mCherry is either co-
transcriptionally or co-translationally expressed.

We first evaluated the ability of VAMP-seq to quantify the abun-
dance of the tumor-suppressor protein PTEN and the enzyme 
TPMT. Each wild-type (WT) open reading frame was amino-ter-
minally tagged with EGFP and recombined into a single genomic 
locus of an engineered HEK 293T cell line17. We also constructed 

cell lines expressing known low-abundance variants of each protein. 
We assessed the EGFP:mCherry ratio by flow cytometry, and found 
that cells expressing WT PTEN or TPMT had approximately five-
fold higher EGFP:mCherry ratios than the known low-abundance 
variants (Fig. 2a and Supplementary Fig. 1b,c).

We next applied VAMP-seq to measure the steady-state abun-
dance of thousands of PTEN and TPMT single-amino-acid variants 
in parallel. Barcoded, site-saturation mutagenesis libraries of each 
protein were separately recombined into our engineered HEK 293T 
cell line17,18. Cells harboring each library had EGFP:mCherry ratios 
that spanned the range of our WT and known low-abundance vari-
ants controls (Fig. 2a). Cells were flow-sorted into bins according to 
their EGFP:mCherry ratio, and high-throughput DNA sequencing 
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Fig. 1 | Overview of VAMP-seq. A mixed population of cells each expressing one protein variant fused to EGFP is created. The variant dictates the 
abundance of the variant–EGFP fusion protein, resulting in a range of cellular EGFP fluorescence levels. Cells are then sorted into bins according to their level 
of fluorescence, and high-throughput sequencing is used to quantify every variant in each bin. VAMP-seq scores are calculated from the scaled, weighted 
average of variants across bins. The resulting sequence–function maps describe the relative intracellular abundance of thousands of protein variants.
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was used to quantify each variant’s frequency in each bin. Finally, 
an abundance score was calculated for each variant based on its 
distribution across the bins (Fig. 1 and Supplementary Table 1).  
Abundance scores ranged from about 0, indicating total loss of 
abundance, to about 1, indicating WT-like abundance (Fig. 2b).

Abundance scores correlated modestly well between replicates 
(mean Pearson’s r =  0.63 and mean Spearman’s ρ =  0.62 for PTEN; 
and mean r =  0.73 and mean ρ =  0.67 for TPMT; Supplementary 
Fig. 2). To improve accuracy, final abundance scores and confidence 
intervals were computed from eight replicate experiments. The 
resulting data set describes the effects of 4,112 of the 7,638  possible 

single-amino-acid PTEN variants and 3,689 of the 4,655 possible 
TPMT variants (Fig. 2c,d and Supplementary Data 1 and 2 and 
Supplementary Table 2). VAMP-seq-derived abundance scores were 
highly correlated with the abundances of protein variants assessed 
in individual experiments (n =  25, r =  0.96 and ρ =  0.96 for PTEN; 
n =  19, r =  0.75 and ρ =  0.61 for TPMT; Supplementary Fig. 3a,b). 
Furthermore, PTEN variant abundances measured using full-length 
EGFP or a 15-amino-acid split-GFP tag19 were in agreement (n =  6, 
r =  0.98 and ρ =  0.94; Supplementary Fig. 1d). Finally, our abun-
dance scores were consistent with 41 PTEN and 20 TPMT variant 
abundance effects assessed by western blotting (Supplementary  
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Fig. 2 | VAMP-seq abundance scores for PtEN and tPMt. a, Flow cytometry profiles for PTEN (top) and TPMT (bottom), with WT (red), known 
low-abundance variant controls (blue) and the variant libraries (gray) overlaid. Bin thresholds used to sort the library are shown above the plots. Each 
smoothed histogram was generated from at least 1,500 recombined cells from control constructs, and at least 6,000 recombined cells from the library. 
b, VAMP-seq abundance score density plots for PTEN (top) and TPMT (bottom) nonsense variants (blue dashed line), synonymous variants (red dashed 
line) and missense variants (filled, solid line). The missense variant densities are colored as gradients between the lowest 10% of abundance scores (blue), 
the WT abundance score (white) and abundance scores above WT (red). c,d, Heatmap of PTEN (c) and TPMT (d) abundance scores, colored according 
to the scale in b. Variants that were not scored are colored gray. e,f, Number of amino-acid substitutions scored at each position for PTEN and TPMT.  
g,h, Positional median PTEN and TPMT abundance scores, computed for positions with a minimum of five variants, are shown as dots. The gray line 
represents the mean abundance score in a three-residue sliding window. i,j, PTEN and TPMT position-specific PSIC conservation scores are shown as dots, 
and the gray line represents the mean PSIC score within a three-residue sliding window. k,l, PTEN and TPMT domain architecture, with positions in alpha 
helices and beta sheets colored cyan and pink, respectively.
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Fig. 3c,d). Thus, VAMP-seq accurately quantifies steady-state pro-
tein variant abundance.

For both proteins, the distribution of abundance scores was 
bimodal, with peaks that overlapped WT synonyms and non-
sense variants (Fig. 2b). Nonsense variants exhibited consistently 
low scores, except for those at the extreme N- or C-terminus of 
each protein (Supplementary Fig. 3e). A larger fraction of PTEN 
variants had low abundance scores than TPMT variants, possibly 
reflecting the lower thermostability of PTEN (melting tempera-
ture Tm =  40.3 °C) relative to TPMT (Tm =  ~60 °C) (Supplementary 
Fig. 3f)20,21. This inverse relationship between low-abundance and 
thermostability is consistent with a deep mutational scan of GFP 
(Tm =  ~78 °C) that found relatively few variants with a large effect 
on fluorescence22,23. Median variant abundance scores at each posi-
tion illustrated tolerance to amino-acid substitution (Fig. 2g,h and 
Supplementary Data 3 and 4 and Supplementary Table 2), which 
was inversely related to conservation (ρ =  − 0.26 and − 0.59 for 
PTEN and TPMT, respectively; Fig. 2i,j and Supplementary Fig. 
3g,h). In PTEN, alpha helices and beta sheets were less tolerant to 
substitution, while flexible loops were highly tolerant (Fig. 2k,l and 
Supplementary Fig. 3i). In TPMT, beta sheets, which comprise the 
core of protein, were less tolerant of substitution (Supplementary 
Fig. 3j). The abundance data can be explored using an interactive 
web interface (see the URLs section).

Thermodynamic stability partly explains variant abundance. 
Variants can potentially alter protein abundance inside cells via a 
variety of mechanisms, including by changing thermodynamic 
stability. We compared our abundance scores to various biochemi-
cal and biophysical features and found that hydrophobic pack-
ing, which affects thermodynamic stability in vitro24–26, was a key 
correlate of abundance. Alteration of WT hydrophobic aromatic, 
methionine or long nonpolar aliphatic amino acids produced the 
largest decreases in abundance for both proteins (Fig. 3a). In fact, 
WT amino-acid hydrophobicity was negatively correlated with 
abundance (WT hydrophob.; Fig. 3b), whereas mutant amino-acid 
hydrophobicity was positively correlated with abundance (MT 
hydrophob.). Conversely, alterations of WT amino acids with high 
relative solvent accessibility (RSA), polarity (WT polarity) and crys-
tal-structure temperature factor (B-factor), all features associated 
with polar residues present on the protein surface, were associated 
with high abundance (Fig. 3b). Consistent with the importance of 
hydrophobic packing, positions with the lowest average abundance 
scores were largely in the solvent-inaccessible interiors of each pro-
tein (Fig. 3c,d). Finally, PTEN abundance scores correlated strongly 
with in vitro melting temperatures20 (n =  5, r =  0.97, ρ =  0.90; 
Supplementary Fig. 4a). These observations, consistent between 
PTEN and TPMT, suggest that variant thermodynamic stability is a 
major driver of variant abundance in vivo.

Next, we explored the role of polar contacts, using the PTEN 
structure to identify all side chains predicted to form hydrogen 
bonds and ion pairs. Of the 76 positions potentially participat-
ing in these interactions, only 26 were mutationally intolerant 
(Supplementary Fig. 4b). These 26 intolerant positions largely clus-
tered into discrete groups in three-dimensional space (Fig. 3e and 
Supplementary Fig. 4c). The groups highlighted regions of PTEN 
particularly important for abundance, and often included positions 
distant in primary sequence. For example, group 5 positions, along 
with p.Ser170, mediate inter-domain contacts between the PTEN 
phosphatase and C2 domains27, and we found that alterations at 
these positions resulted in loss of abundance (Fig. 3e). Alterations 
at these positions also frequently occur in cancer27; our data suggest 
that they may compromise function by virtue of their low abun-
dance. Similarly, loss of abundance from abrogation of intra-domain 
polar contacts may account for the high frequency of alterations 
at p.Lys66, p.Tyr68 or p.Asp107 (group 2) in cancer (Fig. 3e and 

Supplementary Fig. 4d). TPMT lacked clusters of intolerant, polar-
contact positions, possibly because it is a smaller, single-domain 
protein with a higher melting temperature.

Cell membrane interactions modulate PTEN variant abundance. 
Although VAMP-seq does not explicitly query post-translational 
modification, trafficking or partner binding, each of these can 
impact abundance. Therefore, we searched for signatures of these 
properties in our abundance data. PTEN mediates the removal 
of the 3 phosphate from phosphatidylinositol-3,4,5-triphosphate 
(PtdIns(3,4,5)P3) to produce phosphatidylinositol-4,5-diphosphate 
(PtdIns(4,5)P2) at the membrane28. Membrane interaction is aided 
by phospholipid-binding positions present in both PTEN domains 
(Fig. 3f)29,30. Furthermore, PTEN membrane binding and activ-
ity is negatively regulated by phosphorylation of its unstructured 
C-terminal tail28,31. Active site or C-terminal regulatory phospho-
site variants have been found to decrease activity, reduce membrane 
binding and increase abundance, hinting at the existence of a nega-
tive feedback mechanism that degrades membrane-bound, active 
PTEN31,32.

We therefore asked whether any PTEN variants increased abun-
dance, perhaps by altering membrane interaction. We identified 41 
positions in PTEN that had mean abundance scores higher than 
the WT. Nineteen of these enhanced-abundance positions were 
in structurally resolved regions, and 58% of them were within 
7 Å of known phospholipid-binding positions. In comparison, 
only 13% of all structurally resolved PTEN positions were within 
7 Å of phospholipid-binding positions (Supplementary Fig. 4e). 
Thus, positions with abundance-enhancing variants tended to be 
near the membrane-proximal face of PTEN, and included those 
important for binding PtdIns(3,4,5)P3, PtdIns(4,5)P2 or PtdIns(3)
P (refs 30,33,34; Fig. 3f). Furthermore, phosphomimetic substitutions 
at the p.Ser385 PTEN C-terminal regulatory phosphosite exhibited 
the highest abundance scores, whereas positively charged substitu-
tions had low scores, supporting the impact of phosphorylation at 
this site on abundance (Supplementary Fig. 4f). Thus, many of the 
enhanced-abundance variants we identified likely disrupt PTEN 
membrane localization or PtdIns(3,4,5)P3 phosphatase function.

New, potentially pathogenic low-abundance PTEN variants. 
VAMP-seq scores can also be used to identify potentially patho-
genic variants. To simplify comparisons to clinical variant effects, 
we classified PTEN missense single-nucleotide variants (SNVs) as 
either low abundance, possibly low abundance, possibly WT-like 
abundance or WT-like abundance on the basis of how each vari-
ant’s abundance score and confidence interval compared to the 
distribution of WT synonym scores (Fig. 4a and Supplementary  
Fig. 5a). Then, we analyzed variants present in public databases of 
either germline or somatic variation in the light of these abundance 
classifications.

Heterozygous germline loss of PTEN activity can cause a spec-
trum of symptoms including multiple hamartomas, carcinoma 
and macrocephaly, collectively known as PTEN hamartoma tumor 
syndrome35, which includes Cowden syndrome. Two hundred and 
sixteen PTEN germline missense SNVs are in ClinVar, a submission-
driven database of variants identified primarily through clinical 
testing3. Forty-one of the 216 PTEN missense variants are anno-
tated as pathogenic, 25 of which had abundance scores. Of these 25, 
16 (64%) were classified as low abundance (Fig. 4b), a significantly 
higher proportion than the 24% of scored missense variants that 
are low abundance (resampling test, n =  25, P <  0.0001; Fig. 4a and 
Supplementary Fig. 5b and Supplementary Table 3). Of the remain-
ing nine variants, three were possibly low abundance. Four were 
active site variants (p.His93Arg, p.Gly129Glu, p.Arg130Leu and 
p.Thr131Ile) known to be inactive without loss of abundance. The 
remaining two variants (p.Asp24Gly and p.Arg234Gln) were distal 
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to the active site and likely alter PTEN function by an unknown 
mechanism36,37. Thus, VAMP-seq-derived abundance scores, where 
available and combined with structural knowledge of the PTEN 
active-site, identify > 90% of known PTEN pathogenic variants.

We could not formally assess the VAMP-seq false-positive 
rate because no PTEN variants are currently classified as benign. 
However, as has been done before8, we were able to identify likely 
non-damaging variants on the basis of their population frequency. 
Germline PTEN variants cause Cowden syndrome, a high-pene-
trance, dominantly inherited Mendelian disease, at a rate of at least 
~1 per 200,000 individuals35,38. We identified PTEN variants occur-
ring at frequencies higher than expected given the prevalence of 
Cowden’s syndrome, strongly suggesting that they are non-damag-
ing8,39. Seven variants passed this threshold, and six were in our data 
set (Supplementary Fig. 5c). None were low abundance. One was 
possibly low abundance and two were possibly WT-like abundance. 
The remaining three, p.Ala79Thr, p.Pro354Gln and p.Ser294Arg, 
were WT-like in abundance and had frequencies higher than 
5 ×  10−5, strongly suggesting that they are likely to be benign2  
(Fig. 4a). This analysis suggests that the PTEN abundance score 
data have a low false-positive rate.

An additional 41 PTEN variants are annotated as likely patho-
genic in ClinVar. Of these, 23 had abundance scores, 10 (43%) of 
which were classified as low abundance (Fig. 4c and Supplementary 
Fig. 5b). Thus, the likely pathogenic category also had more 
low-abundance variants than expected (resampling test, n =  23, 

P =  0.0188; Supplementary Table 3). The 134 remaining ClinVar 
variants are of uncertain significance. Eighty-three of these vari-
ants had abundance scores, and 22 (27%) were low abundance 
(Fig. 4d). By providing additional evidence that supports pathoge-
nicity, our abundance data could be used to alter variant clinical 
interpretations40 (Supplementary Note and Supplementary Fig. 6).  
For example, 22 variants of uncertain significance along with 275 
possible but not-yet-observed missense variants are low-abundance 
and could potentially be moved to the likely pathogenic category 
once observed in the appropriate clinical setting (Supplementary 
Table 4).

Abundance data suggest mechanisms of PTEN dysregulation. 
Somatic inactivation of PTEN by missense variation is an impor-
tant contributor to multiple types of cancer41. We asked whether 
VAMP-seq derived abundance data could show the contribution of 
previously reported somatic PTEN variants to tumorigenesis. We 
collected PTEN missense or nonsense variants found in The Cancer 
Genome Atlas42 and the AACR Project GENIE43, and compared the 
observed frequencies of PTEN variants of each abundance class to 
the expected frequencies based on cancer type-specific nucleotide 
mutation spectra42. We observed significantly more low-abundance 
PTEN variants than expected for every cancer type analyzed (resa-
mpling test, all P values ≤  0.0032; Fig. 4e; see Supplementary Table 5 
for P values). This pattern suggests that selection for low-abundance 
PTEN variants is a common oncogenic mechanism.
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scores (blue), the WT abundance score (white) and abundance scores above WT (red). The 20% of positions with the lowest scores are shown as a semi-
transparent surface. The substrate-mimicking compounds tartrate and S-adenosyl-L-homocysteine are displayed as magenta spheres. e, Low-abundance 
PTEN residues with predicted hydrogen bonds or salt bridges are shown as sticks with a semi-transparent surface representation. Residues within 11 Å of 
each other are clustered and colored as discrete groups. The residues in each group are identified by number, followed, in parentheses, by the number of 
times any variant at the residue is found in the COSMIC database. f, Residues with high abundance scores are shown as semi-transparent red spheres, 
and known membrane-interacting side chains are shown as opaque cyan spheres. Residues that are both membrane-interacting and have high abundance 
scores are shown in gray.
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Some PTEN variants (for example, p.Cys124Ser, p.Gly129Glu, 
p.Arg130Gly and p.Arg130Gln) are inactive but have WT-like 
abundance. These inactive variants exert a dominant-negative effect 
on PTEN activity, leading to enhanced Akt phosphorylation and 
enhanced tumorigenesis in mouse models44–46. As expected, known 
dominant-negative variants had WT-like or higher abundance scores 
(p.Cys124Ser =  1.14, p.Arg130Gly =  1.09 and p.Gly129Glu =  0.76). 
Known dominant-negative variants were also significantly enriched 
in cancer, largely driven by the high frequencies of p.Arg130Gly 
and p.Arg130Gln44,47 (Fig. 4e and Supplementary Fig. 5c; see 
Supplementary Table 5 for P values).

Unlike for every other cancer type we examined, melanoma 
lacked an enrichment of known dominant-negative variants. 
However, p.Pro38Ser was significantly enriched, accounting 
for 10.4% of PTEN missense variants (resampling test, n =  77, 
P <  0.0001; Fig. 4e and Supplementary Fig. 5d; see Supplementary 
Table 5 for P values). p.Pro38Ser had been previously observed in 
melanoma cancer cell lines, yet had never been functionally char-
acterized48. p.Pro38Ser had a slightly higher abundance score than 
the WT (1.14) in our assay. On the basis of its prevalence in mela-
noma and its WT-like abundance, we hypothesized that it might 

exert a dominant-negative effect. Indeed, we found that p.Pro38Ser, 
like known dominant-negative variants, drove increased Akt phos-
phorylation in the presence of endogenous WT PTEN (Fig. 4f and 
Supplementary Fig. 5e). In contrast, computational predictors sug-
gested that p.Pro38Ser is thermodynamically unstable, highlight-
ing the utility of VAMP-seq (Supplementary Fig. 5f). Overall, our 
results show that low-abundance PTEN variants are important 
cancer drivers and that p.Pro38Ser, over-represented in melanoma, 
likely acts as a dominant-negative variant.

Implications of TPMT abundance for drug treatment. TPMT is 
1 of 17 pharmacogenes whose genotype can be used to guide drug 
dosing49. Functional TPMT is required to metabolize thiopurine 
drugs such as 6-mercaptopurine (6-MP) and its prodrug, azathio-
prine. Thiopurine drugs are used to treat individuals with leuke-
mia, rheumatic disease, inflammatory bowel disease or rejection in 
solid-organ transplant. Increased exposure to thiopurines causes 
treatment interruption or even life-threatening myelosuppression 
and hepatotoxicity. Three known non-functional variants of TPMT, 
NP_000358.1: p.Ala80Pro, p.Ala154Thr and p.Tyr240Cys, are 
found at high allele frequencies (combined minor allele  frequency 
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(MAF) =  0.066) and are responsible for 95% of decreased-func-
tion alleles in the population50. The drug toxicity to carriers of 
these variants can be explained, at least in part, by the fact that 
they result in lower abundance of TPMT relative to the WT13,21  
(Fig. 5a). Accordingly, both abundance scores (Fig. 5a) and individ-
ually assessed EGFP:mCherry values (Fig. 2a and Supplementary  
Fig. 1c) were lower for these non-functional variants compared 
to the WT allele. Since our abundance scores identified known 
decreased-function alleles, we analyzed the abundance of rare 
TPMT variants of unknown function.

In a clinical study of patients with acute lymphoblastic leuke-
mia, 884 patients were analyzed by exome array. Two hundred 
and seventy-eight of these patients also had exome sequencing 
data available. Red blood cell (RBC) TPMT activity and 6-MP 
dose intensity, the dose at which each individual became sensitive 
to 6-MP, were also measured51. The three known, high-frequency 
drug-sensitivity variants were identified, along with four rare vari-
ants: p.Ser125Leu, p.Gln179His, p.Arg215His and p.Arg226Gln 
(combined MAF <  0.0053). The mean RBC activity of individuals 
heterozygous for p.Gln179His, p.Arg215His and p.Arg226Gln was 
lower than the mean activity of individuals without TPMT vari-
ants, but higher than the activity of individuals heterozygous for the 
high-frequency drug sensitivity variants (Supplementary Fig. 7a,b). 
In contrast, RBC activity for p.Ser125Leu was higher than the WT. 
Thiopurine dose intensity, which is affected by TPMT activity, is 
highly correlated with variant abundance (r =  0.99, ρ =  1, n =  6; Fig. 
5b and Supplementary Fig. 7c). Although their RBC activity varied 
over a wide range, the individuals heterozygous for these rare vari-
ants tolerated a higher mean dose of 6-MP than individuals hetero-
zygous for the known sensitivity variants. Additionally, the four rare 
variants are classified as WT-like based on VAMP-seq abundance 
data. Individual assessment confirmed that these rare alleles do 
not affect abundance (Supplementary Fig. 7d). Thus, p.Ser125Leu, 
p.Gln179His, p.Arg215His and p.Arg226Gln may not be decreased-
function variants.

Sequencing of the human population2 and individuals intolerant 
to thiopurine drugs52 has identified an additional 118 rare TPMT 
variants. These variants (MAF range =  0.000004–0.00066) are car-
ried, in aggregate, by 0.2% of the population2, but the impact of most 

of these variants on TPMT activity and abundance is unknown53. We 
measured abundance scores for 96 of these variants, classifying 14 
(15%) as low abundance and 17 (18%) as possibly low abundance. 
When these or any of the other 389 missense variants we classified 
as low or possibly low abundance are identified in the clinic, the risk 
for thiopurine toxicity may be elevated. Dose reduction or closer 
monitoring could minimize toxicity and improve outcomes50.

General utility of VAMP-seq for assessing variant abundance. To 
demonstrate that VAMP-seq is applicable to diverse proteins, we 
evaluated WT and known or predicted low-abundance variants for 
seven additional pharmacogenes or ‘clinically actionable’ genes54,55 
(Supplementary Table 6). For CYP2C9, CYP2C19 and VKORC1, 
we found large differences in the EGFP:mCherry ratios of the WT 
and known or predicted low-abundance missense variants (Fig. 6), 
whereas MLH1 and PMS2 yielded smaller differences. Thus, VAMP-
seq could be applied to these five proteins. Furthermore, ~52% of 
human proteins yielded at least as much fluorescence as MLH1 
when expressed as EGFP fusions16, suggesting that many human 
proteins are compatible with VAMP-seq (Supplementary Fig. 8). 
However, BRCA1 and LMNA resulted in a low EGFP signal or no 
difference in the EGFP:mCherry ratio between WT and known 
low-abundance variants (Fig. 6 and data not shown). Thus, VAMP-
seq will not be applicable in all cases. In particular, proteins that are 
marginally stable (such as BRCA1), make large complexes (such as 
LMNA) or are secreted and therefore break the link between variant 
genotype and phenotype are not amenable to VAMP-seq.

Discussion
VAMP-seq is a generalizable method for multiplex measurement of 
steady-state protein variant abundance. Since alterations in abun-
dance may be a general mechanism of pathogenic variation9,10, an 
important application of VAMP-seq may be to aid clinical geneti-
cists in understanding the effects of newly discovered missense vari-
ants. Indeed, the American College of Medical Genetics suggests 
that well-established functional assays can provide strong evidence 
of pathogenicity40. Thus, in the context of monogenic diseases 
where protein inactivation is pathogenic, VAMP-seq-derived abun-
dance data can help to identify pathogenic variants. The utility of 
VAMP-seq for this purpose is highlighted by the fact that 64% of 
known PTEN pathogenic missense variants were of low abundance. 
Furthermore, VAMP-seq identified 1,138 low-abundance PTEN 
variants that would likely confer an increased risk of PTEN hamar-
toma tumor syndrome and 777 low-abundance TPMT variants that 
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would likely require altered drug dosing. If other proteins yielded 
similar results, VAMP-seq could provide evidence of pathogenic-
ity for greater than half of the pathogenic missense variants we will 
eventually find as more human genomes are sequenced.

Interpretation of somatic variation is more difficult, but func-
tional data can identify driver variants and, therefore, potential 
treatments. For example, variation in PTEN, presumably resulting 
in PTEN loss-of-function, is associated with increased sensitivity 
to PI(3)K, AKT and mTOR inhibitors, and decreased sensitivity to 
receptor tyrosine kinase inhibitors56. Our PTEN abundance data 
identify many loss-of-function variants, which could help to clarify 
the link between PTEN inactivation and altered drug sensitivity, 
and thus might inform cancer treatment. Furthermore, aided by 
our abundance data, we identified p.Pro38Ser as a candidate PTEN 
dominant-negative variant in melanoma. Since the known domi-
nant-negative variants p.Gly129Glu and p.Cys124Ser result in exac-
erbated oncogenic phenotypes in mice44,46, p.Pro38Ser status might 
help to predict tumor aggressiveness.

Despite its utility, VAMP-seq has limitations. Bottlenecks in 
our library generation method were largely responsible for the 
~50% of possible PTEN variants missing from the final data 
set. In the future, early library validation using deep sequenc-
ing along with other well-validated library generation methods8 
could improve coverage. Additionally, as for any assay, VAMP-seq 
abundance data are subject to uncertainty. To address this con-
cern, we quantified the uncertainty associated with each abun-
dance score. We suggest that abundance score uncertainty should 
be taken into consideration, as we did when classifying variant 
abundance. VAMP-seq relies on fusion of the protein of inter-
est to EGFP. We showed a high concordance between VAMP-seq 
abundance data and abundance as measured by other methods, 
but this might not always be the case. Furthermore, VAMP-seq 
cannot yield insight into variants that are pathogenic because 
of reduced enzymatic activity, altered localization or effects on 
splicing. Thus, while VAMP-seq abundance data are useful for 
identifying pathogenic variants, they should not be used to con-
clude that a variant is benign.

Generalizable assays such as VAMP-seq are a promising way to 
understand the functional effects of missense variation at scale. In 
addition to demonstrating its effectiveness for PTEN and TPMT, 
we provide preliminary evidence that VAMP-seq could be applied 
to other clinically relevant proteins. Furthermore, repeating VAMP-
seq assays in different cell lines could find cell-type specific regula-
tion of variant abundance. Comparing variant abundance data in 
WT and chaperone knockout cells could identify what makes a pro-
tein a chaperone client. Combining VAMP-seq with small-molecule 
modulators of chaperone or protein degradation machinery may 
even find variant-specific treatments that could rescue low-abun-
dance variants. Thus, VAMP-seq greatly expands our ability to mea-
sure the impact of missense variants on abundance, a fundamental 
property that underlies protein function.

URLs. VAMP-seq scores are available at http://abundance.
gs.washington.edu. Code used for the analyses performed in this 
work is included as Supplementary Data 5, and is also available 
at http://github.com/FowlerLab/VAMPseq. Code used for subas-
sembly by PacBio is available at http://github.com/shendurelab/
AssemblyByPacBio.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0122-z.
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Methods
General reagents, DNA oligonucleotides and plasmids. Unless otherwise 
noted, all chemicals were obtained from Sigma and all enzymes were obtained 
from New England Biolabs. E. coli were cultured at 37 °C in Luria broth. All cell 
culture reagents were purchased from ThermoFisher Scientific unless otherwise 
noted. HEK 293T cells (ATCC CRL-3216) and derivatives thereof were cultured 
in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine 
serum, 100 U ml−1 penicillin and 0.1 mg ml−1 streptomycin. Induction medium was 
furthermore supplemented with 2 μ g ml−1 doxycycline (Sigma-Aldrich). Cells were 
passaged by detachment with trypsin–EDTA 0.25%. All cell lines tested negative 
for mycoplasma. All synthetic oligonucleotides were obtained from IDT and can 
be found in Supplementary Table 7. All non-library-related plasmid modifications 
were performed with Gibson assembly57. See the Supplementary Note for 
construction of the VAMP-seq expression vectors.

Construction of barcoded, site-saturation mutagenesis libraries for TPMT and 
PTEN. Site-saturation mutagenesis libraries of TPMT and PTEN were constructed 
using inverse PCR18. See the Supplementary Note for a detailed description of 
construction of the barcoded, site-saturation mutagenesis libraries.

Single-molecule real-time (SMRT) sequencing to link each TPMT and 
PTEN variant to its barcode. For both PTEN and TPMT, the relationship 
between variants and barcodes was established using SMRT sequencing (Pacific 
Biosciences). See the Supplementary Note for a detailed description of variant 
linking steps using SMRT sequencing.

Integration of single-variant clones or barcoded libraries into the HEK293-
landing pad cell line. Barcoded variant libraries or single-variant clones were 
recombined into the Tet-on landing pad in engineered HEK 293T TetBxb1BFP 
Clone4 cells that we generated previously17. See the Supplementary Note for a 
detailed description of how variant libraries were integrated into cells.

FACS to bin cells by EGFP:mCherry ratio. Cells harboring variant libraries, 
prepared as described above, were sorted using a FACSAria III (BD Biosciences) 
into bins according to the abundance of their expressed, EGFP-tagged variant. 
First, live, single, recombinant cells were selected using forward and side scatter, 
mCherry and mTagBFP2 signals. Then, a FITC:PE–Texas Red ratiometric 
parameter in the BD FACSDIVA software was created. A histogram of the 
FITC:PE–Texas Red ratio was created and gates dividing the library into four 
equally populated bins based on the ratio were established. The details of replicate 
sorts can be found in Supplementary Table 1.

Sorted library genomic DNA preparation, barcode amplification and 
sequencing. For the TPMT experiments, sorted cells were collected by 
centrifugation and the FACS sheath buffer was aspirated. Cells were transferred 
into a microfuge tube, pelleted and stored at − 20 °C. Genomic DNA was prepared 
using the GentraPrep kit (Qiagen). For each bin, all of the purified DNA was 
spread over eight 25 µ l PCR reactions containing Kapa Robust, and the primers 
GPS-landing-f (in the genome) and BC-GPS-P7-i#-UMI (3 of the barcode) to 
tag the barcodes with a unique molecular index (UMI) and add a sample index. 
UMI-tagging PCRs were performed using the following conditions: initial 
denaturation 95 °C 2 min, followed by three cycles of (95 °C 15 s, 60 °C 20 s, 72 °C 
3 min). The eight PCR reactions were pooled and the PCR amplicon was purified 
using 1 ×  Ampure XP (Beckman Coulter). To shorten the amplicon and add the 
p5 and p7 Illumina cluster-generating sequences, the UMI-tagged barcodes were 
then amplified with the primers BC-TPMT-P5-v2 and Illumina p7. This PCR 
was performed with Kapa Robust and SYBR Green II on a Bio-Rad mini-opticon 
qPCR machine, and reactions were monitored and removed before saturation of 
the SYBR Green II signal, at around 25 cycles. The amplicons were pooled and gel-
purified. Barcodes were read twice by the paired-end sequencing primers TPMT_
Read1 and TPMT_Read2. The UMI and index were sequenced by the index read 
and primer TPMT_Index using a NextSeq 500 (Illumina). After converting from 
the BCL to FASTQ format using Illumina’s bcl2fastq version 2.18, the forward, 
reverse and index reads were concatenated and demultiplexed into a BAM file. 
Consensus barcodes were called from the forward and reverse reads. To collapse 
the barcode copies associated with unique UMIs, the UMI (bases 1–10 of the index 
read) were pasted onto the consensus barcode and unique combinations were 
identified (sort | uniq -c). The barcode from each unique barcode–UMI pair was 
used to populate a FASTQ file that could be used by the Enrich 2 software package 
to count variants.

For the PTEN experiments, sorted cells were replated onto 10 cm plates and 
allowed to grow for approximately five days. Cells were then collected, pelleted by 
centrifugation and stored at − 20 °C. Genomic DNA was prepared using a DNEasy 
kit, according to the manufacturer’s instructions (Qiagen), with the addition of a 
30 min incubation at 37 °C with RNAse in the re-suspension step. Eight 50 μ l first-
round PCR reactions were each prepared with a final concentration of ~50 ng μ l−1  
input genomic DNA, 1 ×  Kapa HiFi ReadyMix and 0.25 μ M of the KAM499/
JJS_501a primers. The reaction conditions were 95 °C for 5 min, 98 °C for 20 s, 
60 °C for 15 s, 72 °C for 90 s, repeat 7 times, 72 °C for 2 min, 4 °C hold. Eight 50 μ l 

reactions were combined, bound to AMPure XP (Beckman Coulter), cleaned and 
eluted with 40 μ l water. Forty percent of the eluted volume was mixed with 2 ×  Kapa 
Robust ReadyMix; JJS_seq_F and one of the indexed reverse primers, JJS_seq_R1a 
through JJS_seq_R12a, were added at 0.25 μ M each. Reaction conditions for the 
second-round PCR were 95 °C for 3 min, 95 °C for 15 s, 60 °C for 15 s, 72 °C for 
30 s, repeat 14 times, 72 °C for 1 min, 4 °C hold. Amplicons were extracted after 
separation on a 1.5% TBE/agarose gel using a Quantum Prep Freeze ‘N Squeeze 
DNA Gel Extraction Kit (Bio-Rad). Extracted amplicons were quantified using 
a KAPA Library Quantification Kit (Kapa Biosystems) and sequenced on a 
NextSeq 500 using a NextSeq 500/550 High Output v2 75 cycle kit (Illumina), 
using primers JJS_read_1, JJS_index_1 and JJS_read_2. Sequencing reads were 
converted to FASTQ format and de-multiplexed with bcl2fastq. Barcode paired 
sequencing reads for PTEN experiments 1 through 4 were joined using the fastq-
join tool within the ea-utils package using the default parameters, whereas only 
one barcode read was collected for PTEN experiments 5 through 8. Technical 
amplification and sequencing replicates were conducted for every sample, and 
compared to assess variability in quantitation stemming from amplification and 
sequencing. Experiments with poor technical replication across multiple bins were 
reamplified and resequenced in their entirety, leaving eight replicate experiments 
with technical replicates shown here (Supplementary Fig. 9). FASTQ files from 
these technical replicate amplification and sequencing runs were concatenated for 
analysis with Enrich258.

Barcode counting and variant calling. Enrich2 was used to count the barcodes, 
associate each barcode with a nucleotide variant and then translate and count both 
the unique-nucleotide and unique-amino acid variants58. FASTQ files containing 
either UMI-collapsed barcodes (TPMT) or total barcodes (PTEN) and the barcode 
map for each protein were used as input for Enrich2. Enrich2 configuration files 
for each experiment are available on the GitHub repository (see the URLs section). 
Barcodes assigned to variants containing insertions, deletions or multiple amino-
acid alterations were removed from the analysis.

Calculating VAMP-seq scores and classifications. RStudio v1.0.136 was used for 
all subsequent analysis of the Enrich2 output. The count for each variant in a bin 
was divided by the sum of counts recorded in that bin to obtain the frequency of 
each variant (Fv) within that bin. This calculation was repeated for every bin in 
each replicate experiment. For each experiment, the total count of each variant 
across the bins was divided by the total count of all variants across the bins to 
obtain a total frequency value (Fv,total) for each variant for each experiment.

∑ ∑ ∑ ∑
=

+ + +
+ + +

F
C C C C

C C C Cv,total
v,bin1 v,bin2 v,bin3 v,bin4

bin1 bin2 bin3 bin4

This total frequency value was used for filtering low-frequency variants, 
which we reasoned would be subject to high levels of counting noise, out of the 
subsequent calculations. We set the Fv,total filtering threshold on the basis of the 
assumption that accurately scored synonymous variants should create a clear, 
unimodal distribution around the WT. We examined how different minimum 
Fv,total filtering threshold values affected the spread and central tendency of the 
synonymous distribution (Supplementary Fig. 10). We empirically selected 
1 ×  10−4.75 as the Fv,total filtering threshold value as it minimized the skew and 
coefficient of variation of the synonymous variant abundance score distribution 
while retaining the majority of missense variants.

Next, for each experiment, a weighted average was calculated for each variant 
(Wv) passing the Fv,total filtering threshold value using the following equation:

=
× . + × . + × . + ×

+ + +
W

F F F F
F F F F

( 0 25) ( 0 5) ( 0 75) ( 1)
( )v
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v,bin1 v,bin2 v,bin3 v,bin4

Thus, all weighted average values ranged from a value of 0.25 to 1.
Finally, for each experiment, an abundance score for each variant (Sv) 

was obtained by subjecting the weighted average of each variant to min–max 
normalization, using the weighted average value of WT (WWT), which was given 
a score of 1, and the median weighted average value for non-terminal nonsense 
variants (Wnonsense) at positions 51 through 349 for PTEN, or positions 51  
through 219 for TPMT, which was given an abundance score of 0, using the 
following equation:

=
−
−

S
W W

W W
( )

( )v
v nonsense

WT nonsense

The final abundance score for each variant was calculated by taking the 
mean of the min–max-normalized abundance scores across the eight replicate 
experiments in which it could have been observed. Only variants that were 
scored in two or more replicate experiments were retained in the analysis. We 
implemented this filter because many sources of noise are not captured in count-
based estimates of variance and because having replicate-level variance estimates 
was critical to our abundance classification scheme. A standard error for each 
abundance score was calculated by dividing the standard deviation of the  
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min–max-normalized values for each variant by the square root of the number of 
replicate experiments in which it was observed. Lastly, the lower bound of the 95% 
confidence interval was calculated by multiplying the standard error by the 97.5th 
percentile value of a normal distribution and subtracting this product from the 
abundance score. The upper bound of the 95% confidence interval was calculated 
by instead adding the product to the abundance score. Positional VAMP-seq scores 
were calculated by taking the median of all single-amino-acid VAMP-seq scores at 
each position.

For both TPMT and PTEN, the distribution of WT synonyms was used to 
create VAMP-seq classifications for every variant (see ‘Supplementary Fig. 5a for 
scheme). First, we established a synonymous score threshold by determining the 
abundance score that separated the 95% most abundant synonymous variants 
from the 5% lowest abundance synonymous variants (0.71 for PTEN, and 0.72 for 
TPMT). Variants whose abundance score and upper confidence interval were both 
below this synonymous threshold value were classified as ‘low-abundance’ variants, 
whereas those with abundance scores below this threshold but upper confidence 
intervals over this this were classified as ‘possibly low abundance’. Variants with 
scores above this threshold but lower confidence intervals below the threshold 
were considered as ‘possibly WT-like abundance’. Variants with scores and lower 
confidence intervals above the threshold were classified as ‘WT-like abundance’.

For both TPMT and PTEN, substitution-intolerant positions were determined 
on the basis of the proportion of variants at the position with scores below the 
synonymous threshold, determined as described above. Positions where five or 
more variants were scored and greater than 90% of the scores were below the 
synonymous variant threshold value were considered substitution intolerant. 
Enhanced abundance positions were determined on the basis of the proportion 
of variants at the position with scores above the median of the synonymous 
distribution. Positions where five or more variants were scored and more than 
five variants had scores above the median of the synonymous distribution were 
considered enhanced-abundance positions.

Assessment of the PTEN library composition. To better understand the 
sources of bottlenecking in the PTEN experiments, the composition of the PTEN 
plasmid library preparation used to generate recombinant cells was assessed by 
determining barcode frequencies using high-throughput Illumina sequencing. See 
the Supplementary Note for a description of the steps taken to characterize the 
PTEN variant library. Metrics regarding the processing of sequencing data for the 
barcode–variant assignments can be found in Supplementary Table 8.

Variant annotation from online databases. Published western blotting results 
for PTEN and TPMT variants are listed, along with references, in Supplementary 
Table 9 and Supplementary Table 10. See the Supplementary Note for a description 
of the online databases that were accessed to obtain PTEN and TPMT variant 
annotations.

PTEN ClinVar and cancer genomics analyses. Nine PTEN variants were listed in 
ClinVar as both likely pathogenic and pathogenic. We examined the evidence for 
these variants—p.His61Arg, p.Tyr68His, p.Leu108Pro, p.Gly127Arg, p.Arg130Leu, 
p.Arg130Gln, p.Gly132Val, p.Arg173Cys, and p.Arg173His—and following the 
ACMG/AMP guidelines40, all nine were deemed to belong in the likely pathogenic 
category. An additional two variants—p.Arg15Lys and p.Pro96Ser—had an 
interpretation of uncertain significance along with another interpretation of 
likely pathogenic or pathogenic, and thus the clinical significance of the variant 
was listed as ‘Conflicting interpretations of pathogenicity’. As recommended 
by the ACMG/AMP guidelines40, variants with conflicting interpretations were 
considered variants of unknown significance.

Likely non-damaging PTEN variants were identified from the variants 
observed in gnomAD at allele frequencies rendering them highly unlikely to 
be causal for Cowden’s syndrome, under an autosomal dominant model of 
inheritance with an estimated prevalence in the population of 1:200,000 (refs 35,38). 
For each PTEN variant observed in gnomAD, a binomial distribution of the 
total number of alleles successfully sequenced at the site was calculated, using a 
collective pathogenic allele estimate of 1:400,000, genetic and allelic heterogeneity 
of 1 and a penetrance of 95%, which are all conservative assumptions8,39. Each 
observed PTEN variant was assessed using the following line of code in RStudio: 
qbinom(0.99, size =  (total alleles genotyped at the site), prob =  (1/400,000)/0.95). 
PTEN variants in gnomAD with an observed allele count a full integer above this 
99% confidence level of the calculated binomial distribution were considered 
variants highly unlikely to be causal for Cowden’s syndrome.

Statistics and reproducibility. For all figures, r denotes the Pearson’s correlation 
coefficient, whereas ρ denotes Spearman’s rho rank correlation coefficient.

For our statistical analysis of the enrichments of low-abundance variants in the 
pathogenic, likely pathogenic and uncertain significance ClinVar categories, we 
used a resampling approach. We drew 10,000 random samples, with replacement 

corresponding to the number of variants scored from each category in ClinVar 
(pathogenic =  25; likely pathogenic =  23; uncertain significance =  83) from the 
1,366 PTEN missense variants (for example, SNVs that change an amino acid) with 
abundance scores. We recorded the frequency of low-abundance variants in each 
round of resampling. Then, we computed the P value for each category by dividing 
the number of times the observed frequency of PTEN low-abundance variants fell 
below the frequencies of low-abundance variants in the resampled sets by 10,000.

For our statistical analysis of enrichments of low-abundance, dominant-
negative or p.Pro38Ser variants in different cancer types, we first used the rates 
of single-nucleotide transitions and transversions observed in TCGA42,59 to create 
mutational probabilities for every possible PTEN missense or nonsense variant. 
On the basis of these probabilities, we drew 10,000 random samples of PTEN 
variants of size to equal the number of PTEN variants found in each cancer type 
(n =  337, 192, 153, 186, 77, 113 and 327 for brain, breast, colorectal, endometrial, 
melanoma, NSCLC and uterine cancers, respectively). For each cancer type, this 
created the null distribution of PTEN variant frequencies based on the mutation 
spectrum alone. Then, for each cancer type, we computed the P value by dividing 
the number of times the observed frequency of low-abundance, dominant-negative 
or p.Pro38Ser variants fell below the frequency of the appropriate type of variants 
in the resampled sets by 10,000.

Rosetta ΔΔG predictions. Computational predictions of PTEN variant losses in 
folding energy (for example, Δ Δ Gs) were performed using the 2017.08 release 
of Rosetta. The PTEN protein data bank (PDB) file 1d5r was renumbered 
to accommodate missing residues, and the TLA ligand was removed. Pre-
minimization of the ensuing file was performed using Rosetta minimize_with_cst, 
followed by the convert_to_cst_file shell script. Fine-grain estimations of 
folding energy changes following PTEN alteration were created with Rosetta 
ddg_monomer60 using the talaris2014 scoring function, and the following 
flags: -ddg:weight_file soft_rep_design, -fa_max_dis 9.0, ddg::iterations 50, 
-ddg::dump_pdbs true, -ignore_unrecognized_res, -ddg::local_opt_only false, 
-ddg::min_cst true, -constraints::cst_file input.cst, -ddg::suppress_checkpointing 
true, -in::file::fullatom, -ddg::mean false, -ddg::min true, -ddg::sc_min_only false, 
-ddg::ramp_repulsive true, -ddg::output_silent true.

Comparison of TPMT red blood cell activity or dose intensity to abundance 
scores. Genotypes, TPMT red blood cell activity that was normalized by cohort 
and dose intensity data for 884 acute lymphoblastic leukemia patients were 
provided from an earlier study51. The mean TPMT red blood cell activity and 
dose intensity from individuals heterozygous for each unique TPMT variant was 
calculated. These values were directly compared to abundance scores for that 
variant from the VAMP-seq assay or the WT-normalized GFP:mCherry ratio from 
individual flow cytometry experiments (Fig. 5 and Supplementary Fig. 7).

Western blotting. See the Supplementary Note for details of the western blotting 
procedures.

Code availability. Code used for the analyses performed in this work is included 
as Supplementary Data 5, and also available at http://github.com/FowlerLab/
VAMPseq. Code used for subassembly by PacBio is available at http://github.com/
shendurelab/AssemblyByPacBio.

Data availability. All raw sequence data and function scores are freely available for 
all academic users by non-exclusive license under reasonable terms to commercial 
entities that have committed to open sharing of PTEN and TPMT sequence 
variants and under a free non-exclusive license to non-profit entities. The Illumina 
and PacBio raw sequencing files and barcode–variant maps can be accessed at 
the NCBI Gene Expression Omnibus (GEO) repository under accession number 
GSE108727. VAMP-seq scores are available at http://abundance.gs.washington.edu. 
The data presented in the manuscript are available as Supplementary Data files.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.
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Data collection PacBio Base call files were converted from the bax format to the bam format using bax2bam (https://github.com/PacificBiosciences/
pbccs). PacBio consensus sequences for each sequenced molecule in every library were determined using the Circular Consensus 
Sequencing 2 algorithm with default conditions (ccs, https://github.com/PacificBiosciences/pbccs). Each resulting consensus sequence 
was then aligned to either the TPMT or PTEN reference sequence using Burrows-Wheeler Aligner60 (http://bio-bwa.sourceforge.net/). 
Sequencing reads were converted to fastq format and de-multiplexed with bcl2fastq. Barcode paired sequencing reads for PTEN 
experiments 1 through 4 were joined using the fastq-join tool within the ea-utils package (http://expressionanalysis.github.io/ea-utils/) 
using the default parameters.

Data analysis Enrich2 v1.1.0 was used to count the barcodes, associate each barcode with a nucleotide variant, and then translate and count both the 
unique-nucleotide and unique-amino acid variants. FACSDIVA v8 and FlowJo v10 were used for FACS / flow cytometry collection and 
analysis, respectively. RStudio v1.0.136 was used for the analysis, with the versions of the relevant packages used listed in Supplementary 
File 1.
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Data exclusions As described in the methods section, experiments with poor technical replication across multiple bins were reamplified and resequenced in 
their entirety, resulting in the eight biological replicate experiments we report.

Replication Confidence intervals were calculated for each abundance measurement. The majority of findings we discuss involve low abundance variants, 
which had reliable measurements across replicates. For a handful of variants, we also reproduced abundance scores and phenotypes with 
independent, orthogonal experiments (eg. testing variants for fluorescence individually, comparing variant scores with published western 
blotting phenotypes, and in-house western blot assays).

Randomization There were no samples/organisms/participants allocated into experimental groups.

Blinding There was no group allocation.

Materials & experimental systems
Policy information about availability of materials

n/a Involved in the study
Unique materials

Antibodies

Eukaryotic cell lines

Research animals

Human research participants

Unique materials

Obtaining unique materials All unique materials are readily available from the authors.

Antibodies

Antibodies used Western blotting was performed using a 1:2,000 dilution of anti-phospho-AKT (T308; 13038; Cell Signaling Technology) followed 
by detection with a 1:10,000 dilution of anti-rabbit-HRP (NA934V; GE Healthcare); a 1:2,000 dilution of anti-pan-AKT (2920; Cell 
Signaling Technology) followed by detection with a 1:10,000 dilution of anti-mouse-HRP (NA931V; GE Healthcare); a 1:4,000 
dilution of anti-GFP antibody (11814460001;Roche), followed by detection with a 1:10,000 dilution of anti-mouse-HRP; 1:5,000 
dilution of anti-HA-HRP (3F10; Roche); or a 1:5,000 dilution of anti-beta-actin-HRP (ab8224; Abcam).

Validation These antibodies have been previously validated in our laboratories, and result in the predominant protein bands of the 
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expected molecular weight. Based on the manufacturer's website, the anti-beta-actin antibody has been used in 176+ 
publications as a loading control. Control cells lacking HA- or GFP- tagged proteins were first tested in western blotting 
experiments to validate the correct identification of the correct-sized band that appeared when HA- or GFP-tagged proteins 
were expressed. Furthermore, specificity of the antibodies were confirmed through observation of expected relative band 
intensities comparing variants of known effect. Based on the manufacturer's website, the pan- and phospho-AKT antibodies have 
been used in at least 19 and 104 publications, respectively. Control variants included in our experiments recapitulated 
observations made by other groups using similar antibodies to test for the same effects.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK 293T (ATCC® CRL-3216™) was the source cell line used, and it was obtained directly from ATCC. These cells were then 
modified through genome engineering steps performed in our laboratory to create the HEK 293T TetBxb1BFP Clone4 cells 
used in the experiments.

Authentication The HEK 293T-based cell lines have not been authenticated.

Mycoplasma contamination The HEK 293T TetBxb1BFP Clone4 and Clone37 cell lines used in this manuscript have tested negative for mycoplasma 
contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Method-specific reporting
n/a Involved in the study

ChIP-seq

Flow cytometry

Magnetic resonance imaging

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Cells were prepared for sorting by lifting from 10 cm plates with Versene solution (0.48 mM EDTA in PBS), washing 1X in PBS, 
resuspending in sort buffer (1X PBS + 1% heat-inactivated FBS, 1 mM EDTA and 25 mM HEPES pH 7.0) and filtering through 35 
μm nylon mesh.

Instrument Cells were sorted on a BD Aria III FACS machine using an 85 or 100 μm nozzle. mTagBFP2, expressed from the unrecombined 
landing pad, was excited with a 405 nm laser, and emitted light was collected after passing through a 450/50 nm band pass filter. 
EGFP, expressed after successful recombination of the variant or library plasmid, was excited with a 488 nm laser, and emitted 
light was collected after passing through 505 nm long pass and 530/30 nm band pass filters. mCherry, also expressed after 
successful recombination of the variant or library plasmid was excited with a 561 nm laser, and emission was detected using 600 
nm long pass and 610/20 band pass filters. Analytical flow cytometry was performed with a BD LSR II flow cytometer, equipped 
with filter sets identical to those described for the Aria III, with the exception of mCherry emission which was detected using 
595nm long pass and 610/20 band pass filters.

Software FACS Diva was used to collect the data. 
FlowJo_V10 was used for analysis.

Cell population abundance The entire cell populations sorted were used for downstream analysis.

Gating strategy Before analysis of fluorescence, live, single cells were gated using FSC-A and SSC-A (for live cells) or FSC-A and FSC-H (for single 
cells) signals. Recombinant mTagBFP2 negative, mCherry positive cells were isolated, with mCherry fluorescence values at least 
10 times higher than the median fluorescence value of negative or control cells, and mTagBFP2 fluorescence at least 10 times 
lower than the median of the unrecombined mTagBFP2 positive cells (See Supplementary Fig. 1a for gating example)

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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