ODs on the spec and nanodrop

So there are two ways to measure bacterial culture ODs in the lab. The first is to use the nearby ~ $10,000 Thermofisher Nanodrop One (no cuvette option). The second option is to use a relatively cheaply made cuvette-based spectrophotometer I bought off of Amazon for ~ $100. To make it clear, this comparison is not a statement about the value of a Nanodrop (though I will say that having an instrument like a Nanodrop is essentially a must in a mol biol lab). This is more about if the Nanodrop is already being used by someone and waiting would get in the way of some bacterial speccing timepoints, can I purchase a $100 piece of equipment to relieve such a conflict? Especially for bacterial cultures, where volume isn’t really an issue and the measurement is simply the reading at 600 nm, not even requiring some algebra to make a conversion to more practical units (like ng/uL for DNA).

So to do this comparison, over a number of independent instances, I took the same bacterial culture and put 1mL into a cuvette and ran it on the old spec, and took 2 uL and put it on the Nanodrop pedestal and measured there. I made a table of the results, and graphed it in the plot below.

So the readings on the two instruments certainly correlate (that’s good), although it’s not an exact 1:1 relationship. In fact, the nanodrop gave numbers roughly 1.5 times higher than the spec. But if the two instruments give two different readings, then the question becomes “which is right?”

And to that, I essentially say there is no right answer. Each is a proxy for bacterial cell density (ie. Billions of bacteria / mL), but there’s no “absolute” information encoded in the OD number that tells us that specifically for our bacteria, and we’d still have to come up with a conversion factor either way (ie. my doing limiting dilutions of specc’d cultures and counting colonies), and once we have that, both will be right with that context. Sure, it would be nice if we had a method that was the most in-line with whatever ODs that were being described by various papers in the literature, but who knows what they used (recent papers may be using ODs from the nanodrop [with some perhaps using the cuvette option but many others not], while the older publications certainly didn’t have and instead likely used some old-school form of spec). But even that’s going to be heterogeneous, and will only give limited information anyway.

Well, good record-keeping to the rescue. We’ve transformed the positive control plasmid enough times to sample a range of various ODs just by chance, to see if certain bacterial ODs correlate with transformation efficiency. And boy, there’s been a whole lot of nothing there so far (which is actually quite notable; see below).

(FYI: I don’t remember which instrument I used to measure the OD A600 readings. Probably mostly the old spec, tho).

So yea, I’ve generally used cultures with ODs at the time of collection between 0.1 and 0.45, and they’ve collectively given me transformation rates of ~ 20,000 using our standard “positive control” plasmid. So there seems to be a pretty wide window of workable ODs. But generally speaking, I see no issue with having a culture of 0.1 to 0.4 OD as measured with either machine for use with chemical transformation.