Budget Estimations

I’ve been thinking about budgets, partially b/c I just went through a protracted experience of getting the school to give me access to the remaining part of my startup (from almost 5 years ago! And while I was repeatedly told the remaining amount was non-expiring, it was just given to me in an account that expires 5 years from now…). Regardless, the goal is to spend down these remaining institutional funds while bolstering my research group, largely through personnel additions and management.

For that reason, I created a simulation of how personnel salary + other operational costs would exhaust my current funding portfolio (currently one R21 that ends in a year, an R35 that ends in 2 years, and the aforementioned remaining startup account). The black line in the plot below shows this happening, with the line terminating around the 3 year mark. This is presumably around when I would expect to run out of money, if zero future action were taken.

Now, keep in mind that there are some MAJOR assumptions going on here:
1. This simulation assumes that I DO NOT receive another grant in the next 5 years. Of course that will not be the case.
2. Aside from Nisha’s intended graduation date, the rest of the end dates are very roughly estimated. In the case of research staff, this is assumed to be indefinite for two of the individuals. Of course, if money ends up getting tight, A) my salary will end up going down some, which will help alleviate costs, and B) I’ll let go of research staff as necessary, and well before there are impacts on students (to which there is a larger commitment).
3. Everything is modeled as a daily recurring expenditure. In real life, I think everything behaves more like discrete sums that are added into the account yearly (like NIH budgets) or monthly / bimonthly (like salaries).

Note: It goes into the negative values since it’s allowing the startup not spent by the end of R35 in two years to subsequently exhaust (that’s when the line ends).

Now, I’m actively trying to recruit more personnel to the lab, at this point largely in the form of PhD students. That’s what the additional colors on the plot are. A singular PhD student would be the orange line, and two new PhD students would be the red line.

Especially in light of the fact that I *have* to spend that startup (or it presumably goes *poof* into the administrative ether), looks like I’m going to be good for at least a couple of years in the worst-case scenario. Regardless, this really does help me frame what I need to be doing at a given time. If financial situations were dire or particularly worrisome, I would be focusing on writing grant applications right now. Based on the above plot, I think it makes a lot more sense for me to devote focus on publishing existing projects and further developing preliminary evidence to increase the success rates of grant applications I could just as well submit in a year.

PhD Student Rotations

This post was originally from June 2022, but I’m reposting now ahead of the 2024 incoming PhD class rotations.
It’s PhD student rotation season again at CWRU, so I figured I may as well put this post on the lab website to 1) inform any prospective PhD students that may be perusing through the lab website, and 2) remind me of the things I like to bring up before people rotate.

  1. If you’re interested in rotating, we should definitely schedule a meeting so I can get a sense of your background and interests, so I can tailor the rotation appropriately (and screen out people who are likely to be really poor fits; see point 3 below). It will also give me the opportunity to talk through some of the other points listed below.
  2. Rotations are suuuuper short here (Generally 4 to 6 weeks). Thus, there is ZERO expectation on my end to get any “publication quality” experiments done. My main goal is to make sure you’re familiar with some of the bread-and-butter methods in the lab (eg. molecular cloning, landing-pad -centric tissue culture, script-based data analysis). Failed experiments are fine, since it gives us the opportunity to talk about the data and troubleshoot together. The main thing I’ll be looking for is how well we’re able to communicate and work together, since that’s arguably the most important thing we can learn from that rotation that could be extrapolated to predict how good of a dissertation work environment it would be for the specific individual.
  3. There isn’t really any prerequisite experience for rotation students. Yea, it would be helpful if you know how to pipet, have done some basic tissue culture work of any kind, and have designed and interpreted some experiments before. Being housed in a wet-lab department, I have very little expectation of computational experience. That said, wet-lab people that have zero interest in learning computational biology and data analysis are probably not great fits, since all projects in the lab will always have hefty data analysis components. Conversely, computation-only people with zero interest (and maybe even experience) in wet-lab research is also likely a bad fit, since all projects in the lab will also always have hefty wet-lab components.
  4. The lab is pretty interdisciplinary. Like, some people work on virology, while other people work on proteins related to clinical genetics. Thus, you’ll have to be generally interested in science / biology / medicine to enjoy your time here. In contrast, if you only care about subject XXXX or subject YYYY and nothing else, then lab meetings are going to be really boring to you. There’s always talk about (practical) statistics, molecular biology, synthetic biology, cell engineering, assay development, and high throughput sequencing; thus, if you’re into those things at some level, then you’re probably fine!
  5. There are three very different options in terms of dissertation projects. There are some “ready-to-go” project ideas, where I’ve already crafted a grant application very clearly explaining the project scope, or there is no grant yet but the ideas are straightforward and all of the assays are already in place. These are currently listed on this Google Sheet. There are also some projects where I’ve played around a bit with some ideas / preliminary data, but it’s not really clearly written out anywhere and things will need to be hashed out. Both of these types of projects should be listed in this “Research Directions” network graph. Then again, there are probably some really great projects that I haven’t thought of yet, that A) are in line with the student’s interests, and B) can be tackled with the techniques / perspectives that the lab is good at. If it’s a decent idea that has links between cell culture assays, cell engineering, genetics, proteins, cell biology, and pathological consequences, I’m sure I’ll find it interesting and get on board. Highest potential risk, but also highest possible reward for the student (at least from a training for independent thinking perspective).
  6. Rotation projects don’t have to be on the same topic as potential thesis projects. In my opinion, it’s oftentimes best to separate them, since potential thesis projects likely don’t have any DNA constructs made for it already, so working on it means only doing (likely failed) cloning during the rotation, which is no fun and not particularly informative.
  7. I’ll only ever take one student any given year. So while it’s not a competition, some people who may want to join may not be able to. Something to keep in mind!
  8. I expect every student to give an “end of rotation” presentation during lab meeting. The main reasons are A) So I can get a sense of where you’re starting in terms of presentation skills, and B) so we can go through the process of giving feedback on a presentation, since that’s an important part of doing a PhD in the lab (giving and receiving critiques / constructive feedback). It’s OK if you didn’t really generate any real data during the rotation; pretty hard to generate data in such a short rotation, and as I note in point 2 above, it’s not really the goal of the rotation anyway. Instead, what I would be looking more for would be signs of understanding the concepts behind the project and the techniques, and thoughtfulness in organizing the presentation for clarity.
  9. While I suppose I’ll have the final word into who is potentially offered a spot in the lab, I will still be soliciting opinions on rotating students from existing lab members. The idea isn’t that it’s a “popularity contest” in any sense; it’s more, I want to make sure that all full-time personnel that join the lab are able to get along with the people already there, to avoid potentially problematic or toxic situations.

Pseudotyped Virus Entry Assay with Multiplexed Receptor Libraries

May 30th, 2024 update:
Now published in PLoS Pathogens! Find it at this link: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1012044

Originally posted February 25th 2024:

Spec comparisons

Well, I was going to talk about some of these experiments during lab meeting, but why make a Powerpoint or Google CoLab link people won’t follow when I can write it as a blog post.

Regardless, we’ve recently been looking at how our various possible methods of spectrophotometry compare.

  1. Amazon Spec” purchased for $235 back in November 2020.
  2. ThermoFisher Nanodrop in a departmental common room (I don’t actually know what kind as I’ve never used it)
  3. BioTek Syngergy plate reader, either… A) with 200uL of bacteria pipetted into a flat-bottom 96-well plate, or B) using their “BioCell”, which is a $290 cuvette that fits onto one of their adapter plates. I mistakenly label this one as “BioCube” in the plots, but they probably should have just named it that in the first place so I don’t feel too bad.

To test the methods, Olivia sampled bacterial optical densities while a batch of e.coli were growing out to make competent cells. Thus, the different densities in the subsequent data will correspond to different timepoints of the same culture growing out. Each time point was measured with all four methods.

Well, all of the methods correlated pretty well, so no method was intrinsically problematic. I’m not sure if the settings for any automated calculation of absorbance values, but the BioCell numbers were just off by an order of magnitude (The BioCell data also had a clear outlier). The Amazon spec and Nanodrop generally gave similar values, although the nanodrop gave slightly higher numbers, comparatively.

The plate reader option was also perfectly fine, although it required more back-end math to convert the absorbance values to actual optical density. This is also not the raw data, as the media only absorbance has to be collected and subtracted to yield the below graph.

Rather than try to figure out the path length and try to calculate the formula, I just used the above dataset to create a calibration for “nanodrop-esque optical density”. (Note: There was a second independently collected set of data I added for this analysis). Here, the goal was to actually use the raw values from the plate reader output, so people could do the conversion calculation on the fly.

Say you have a particular nanodrop-esque A600 of 0.5 in mind. The formula to convert to plate reader units is 0.524 * [nanodrop value] + 0.123, or in this case, 0.385. Checks out with the linear model line shown above.

Or, if you already have raw platereader values and want to convert to nanodrop-esque values, the formula here is 1.79 * [biotekp value] – 0.2 to get the converted value. Here, let’s pretend we have an absorbance value of 0.3, which calculates to a nanodrop-esque value of 0.338. So perhaps that’s a decent raw plate reader value to get with nearly grown bacterial cultures during the chemically competent cell generation process.

Lastly, it’s worth noting how surprisingly large dynamic range there seems to be for spec readings of bacterial cultures. It’s likely largely because we’re used to handling either mid-to-late log phase growth or saturated / stationary cultures, but we’re used to dealing with values in the 0.2 to 1.2 range, although the log-scale plots above suggest that we can be detecting cultures reasonably well within the 0.01 to 0.1 range as well.

NSF? More like Not So Fast.

When I was an early PhD student, I barely knew about the NSF GRFP, and it wouldn’t matter if I did since I felt too overwhelmed / behind on everything to consider applying. Fast forward to my postdoc, where I was in a lab that expected you to write for postdoc fellowships (it’s a good policy, btw), in a department where half the grad students seemed to *win* an NSF GRFP any given year; this experience made me realize just how useful of a training opportunity writing fellowship applications can be, as well as helping me to realize that there can be a bit of a feed-forward effect for success, where being awarded a competitive fellowship early on opens up a small number of additional possibilities, which can compound over time until the final result ends up being a large effect.

Well, simply bringing this ethos with me when starting my own lab seemingly isn’t enough; there are apparently entire institutional administrative systems that can get in the way. I’ve already talked about a previous experience, where the school grants offices wouldn’t allow a student’s application to be sent since they weren’t in the internal grants management system yet, despite the fact that NSF GRFP applications are supposed to be sent in by the student. At least that application got saved at the 11th hour, and was actually successfully submitted and reviewed, even though it went unfunded.

This year, we had two students put together well-prepared, complete applications, only to be disqualified on the same technicality. Turns out, sometime within the last two years, the school started putting a summer class on the transcripts of incoming biomedical PhD students; in short, instead of the first entry of their transcript being the fall quarter, there is a summer quarter listed on the transcript preceding it. In actuality, the only thing that is happening during this time is rotations, which typically start in July or August here. There may be a handful of workshop type things, but nothing that counts as an academic course that is a requisite for eventually graduating. It’s effectively the same situation as most other PhD programs in terms of timing of official instruction.

Well, in the case of 2nd year grad students, NSF considers that summer transcript entry as indication that they have completed 1 year of graduate coursework prior to submission, disqualifying them. Each of the two students got an email from NSF saying so, and each student tried to get a statement from the university administration clarifying the situation. In neither case was the school willing to deviate from whatever legal wording they already had, so the disqualification appeal filed by the student was denied by NSF.

So two applications (and probably more) where, in retrospect, the student was writing the application documents, as well as corralling letter writers, with a 0% chance of success. You’d think the school would want to change their transcript policies to not unnecessarily disqualify their biomedical PhD students from the NSF GRFP, but there was seemingly little indications that the contacted administrators will do anything about it. So essentially, no CWRU School of Medicine PhD student in their second year should submit an NSF GRFP application, unless something changes. Maybe (hopefully), this isn’t the case with other CWRU schools, like those overseeing biology or bioengineering.

Well, the biomedical PhD students can still apply in their first year, right? I suppose so, although if they’re new to the campus, they probably aren’t writing their application based on a 4 to 6 week rotation (the expected rotation duration in our school). Only those that were in the know and had strong, supportive research environments prior to grad school would be in the running, and I suspect that isn’t a large fraction of our incoming student populations.

So a school that simultaneously bemoans a lack of student fellowships, yet through lack of experience and rigid / misguided administration, manifests the same situations it bemoans, with little indication that this will ever change even when notified of the problem. Institutions, man.

Open Research Assistant Position

Our lab space issues were recently resolved, so I’m now able to spend some of my remaining start-up funds to hire more personnel. I also have a bunch of starts to various research directions, and nobody aside from me to push parts of them forward in various aspects (eg. tissue culture, data analysis, experimental planning). I’m curious to see if I can find a relatively recent college graduate that is interested in pursuing a PhD program, but wants to take a year or two beforehand to gain more hands-on research experience. Well, if so, here’s an open position on the CWRU hiring website that can be applied to (if you’re like me and already a CWRU employee, you may need to open that link in an incognito window since existing cookies can get in the way otherwise).

6/3/24 update: We were able to hire someone for the position! Update to the personnel page of the lab website when they start in August.

HEK cell small molecule toxicities

I’ve now done a *bunch* of kill curves with HEK cells in various forms (WT HEK cells, single or double landing pad cells). Here’s a compendium of observed toxicity of serial dilutions of various small molecules in HEK cells not engineered to be resistant in any way. (This is mostly for my own reference, when I’m in the TC room and need to check on some optimal concentrations).

Recombinastics paper in ACS Synth Biol

Our new paper, describing double landing pad cells and some other nifty tricks or assay configurations you can do with having orthogonal Bxb1 recombinase sites, is now published in ACS Synthetic Biology.