Quantitating Western blots

Almost everybody hates doing Western blots since they’re so labor intensive (and somewhat finicky), but they are undeniably useful and will forever have a place in molecular biology / biomedical research. We’re currently putting together a manuscript where we express and test variants of ACE2, which requires some Western blotting quantitation. Since I’m about to do some of the quantitation now, I figured I’d just record the steps I do it so trainees in the lab have a basic set of instructions they can follow in the future.

This already assumes you have a “.tif” file of western blot. While I someday hope to do fluorescent westerns, this will likely be a chemiluminescent image. Hopefully this isn’t a scan of a chemiluminescent image captured on film, b/c film sux. So you presumably took it on a Chemidoc or an equivalent piece of equipment. Who knows; maybe I finally found the time to finish / standardize my chemiluminescent capture using a standard mirrorless camera procedure (unlikely). I digress; all that matters right now is you already have such an image file ready to quantitate.

My favorite method for Western blot quantitation is to use “Image Lab” from BioRad. You know, I like BioRad. And I definitely like the fact that they provide this software for free. Anyway, download and install it as we’ll be using it.

Once you have it installed, start it up and open your image file of interest. The screen will probably look something like this:

First off, stop lying to yourself. By default, the imagine is going to be auto-scaled so that the darkest grey values in your image get turned to black, while the lightest grey values get turned white. But in actuality, the image you see is not going to be the “raw” range of your image, so you may as well turn off the auto-scaling so you see your image for what it really is. Thus, press that “Image Transform” button…

… and get a screen that looks like below:

See where those low and high values are? Awful. Set the low value to 0 and the high value to the max (65535).

And now the image looks like this, which is great, since this is what the actual greyscale values in your image actually look like.

OK, now we can actually start quantitating the bands in the plot. First off, don’t expect your western blot to look 100% clean. Lysates are messy, and you can’t always get pure, discrete bands. Sure, some of the lower-sized bands may be degradation products that happened when you accidentally left the lysates out of ice (you should avoid that, of course). Then again, you may have done everything perfectly bench-wise, and the lower-sized bands may be because you’re overexpressing a transgene, and proteins naturally get degraded, and overexpressed proteins may tax the normal machinery and get degraded more obviously. I say the best thing is to acknowledge that happens, show all your results / work, and make the more educated interpretations that you can. Regardless, in that above plot, we’re going to try to quantitate the density of the highest molecular weight band, since that should be the full-length protein. To do that, first select the “Lane and bands” button on the left.

I then press the “Manual” lane annotation button.

In this case, I know I have 11 lanes, so I enter that and get something that looks like this:

Clearly that’s wrong, so grab the handles on the edges and move the grid such that it actually falls more-or-less on the actual lanes.

Sure the overall grid is pretty good, but maybe it’s not perfect for every single individual lane. The program also lets you adjust those. To do that, click off the “Resize frame” button on the left so it’s no longer blue…

And then adjust the individual lanes so they fit the entire band as your human eyes see them, resulting in an adjust grid that looks like this:

Nice. Now go to the left and select the tab at the top that says “Bands”, and then click on the button that says “Add”.

Once you do that, start clicking on the bands you want to quantitate across all of the lanes. You may have to grab the dotted magenta lines in each lane to adjust them so that the actual band is within them (and presumably somewhere near the solid magenta line which should be somewhere in between them). This is what it looks like after I do that:

It’s good to check how well the bands are being seen by the program. Go to the top and press the “Lane profile” button. It should give you a density plot. This is also the window where you can do background subtraction. Find a number that seems sensible (in this case, a disk size of 20 mm seems reasonable), and make sure you hit the “apply to all lanes” button so it propagates this across lanes. While I’m only showing the picture for lane 5, it’s probably worth scanning across the lanes to make sure the settings are sensible.

Now with those settings fine, close out, and then click on “Analysis table” at the top. Once that is open, go to the bottom and click on “lane statistics”. These should be the numbers you’re looking for.

Now export the statistics (either pressing the “copy analysis table to clipboard” button and pasting in an spreadsheet you want to use, or the “export analysis table to spreadsheet”). The number you’ll be looking to analyze will be those in the “Adj. Total Band Vol” column.

Note: Now that I’m doing this, the “standard curve” button is now ringing a bell. I’m fairly certain that in my PhD work, when I ran a ton of Western blots or just straight up protein gels stained with coomassie, that I would run dilutions of lysates / proteins to make a standard curve of known proteins amounts that I could calibrate the densitometry against. We obviously didn’t do that here, since we didn’t have the space, so these numbers aren’t going to be quite as accurate if we had done so. Still, getting some actual numbers we can compare across replicates is still a major step up than not quantitating and having everything be even more subjective.